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In the context of multi-channel call centers with inbound calls and emails, this article considers a threshold policy on the reservation
of agents for the inbound calls. We study a general non-stationary model where calls arrive according to a non-homogeneous Poisson
process. The optimization problem consists in maximizing the throughput of emails under a constraint on the waiting time of inbound
calls. An efficient adaptive threshold policy is proposed that is easy to implement in the automatic call distributor. This scheduling
policy is evaluated through a comparison with the optimal performance measures found in the case of a constant arrival rate and
also with other intuitive adaptive threshold policies in the general non-stationary case.
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1. Introduction

Call centers require a very precise match of demand and
supply. A delay in the answering of a call, its waiting
time, is usually not allowed to exceed 20 seconds (Koole,
2013). Thus, a very accurate prediction of the demand is re-
quired. However, this can rarely be obtained, because of the
volatility of call arrival patterns. Therefore, there is often a
mismatch between demand and the scheduled supply, con-
sisting of rostered call center employees (usually called
agents). Moreover, even if the demand is accurately fore-
casted, a considerable overcapacity should be scheduled to
be able to deal with the random Poisson fluctuations of the
demand. Usually queueing models are used to quantify this
overcapacity, most often Erlang C.

To prevent idle overcapacity, and to limit the necessity to
have extremely accurate forecasts, inbound calls are some-
times mixed with other types of customer contacts that have
less-strict delay requirements, such as emails or outbound
calls. This is called (call) blending. The amount of capacity
assigned to the other channels is supposed to adapt to the
number of inbound calls, giving at the same time a good
service level for the inbound calls and a good occupancy of
the call center agents.

Due to the strict waiting time requirements on inbound
calls it is best to give them priority over the other channels.
To maximize agent productivity it would be optimal to
assign an outbound job to every idle agent when there are
no inbound calls in the queue. This would lead to 100% pro-
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ductivity. However, this policy leads to long waiting times
for inbound calls because an agent is never waiting for an
inbound call to arrive. Consequently, the service-level con-
straint on inbound calls might be violated. For instance,
consider a simple Markovian queueing model with inbound
jobs arriving at rate λ arriving at a queue with infinite ca-
pacity, an infinite amount of emails, s polyvalent identical
agents, identical service rate μ for both job types. Using the
underlying birth–death process, one may easily deduce that
the expected waiting time for inbound jobs is ρ

λ(1−ρ) , where

ρ = λ
sμ , and the probability of delay of inbound jobs is 1.

Therefore, for a given staffing level, this work-conserving
policy does not have enough flexibility to reach some pre-
defined service level for inbound jobs. Somehow we should
reserve capacity for inbound jobs to obtain an expected
waiting time strictly lower than ρ

λ(1−ρ) and a probability of
delay strictly lower than 1, which allows us to obtain better
call service levels. Thus, a more sophisticated assignment
policy, other than the work-conserving one, is required.
A service level measures a call waiting time performance
(for example, the proportion of calls that are answered
within a predefined time threshold, or the expected waiting
time).

In Bhulai and Koole (2003) and Gans and Zhou (2003) it
is shown that an efficient assignment policy has the follow-
ing form: outbound jobs should only be scheduled when
there are no waiting inbound calls and when the num-
ber of idle agents exceeds a certain threshold. Thus, the
problem of controlling our blended call center reduces to
determining the right threshold level. This threshold, how-
ever, depends on all of the system parameters, which are
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the inbound call arrival rate, the inbound call service rate,
the email service rate, and the number of agents. However,
these parameters, especially the arrival rate, are often hard
to determine. This calls for a policy in which the threshold
is adapted to the current situation without explicitly using
the parameters of the system. In this article, such adaptive
policies are studied, both for systems with a constant (but
unknown) arrival rate and for the more realistic situation
of a fluctuating arrival rate. The parameter that is used to
update the threshold is the service level up to that moment,
a number that is always available in call centers; We con-
sider the service level that measures the proportion of calls
that are answered within a predefined time threshold. The
overall objective is to reach a certain service level by the
end of the day, while maximizing the number of emails that
are done.

We now discuss the relevant literature. There is a rich
literature on planning and scheduling in call centers; see
Gans et al. (2003) and Akşin et al. (2007). However,
few papers focus on blending. The general context of
multi-channel call centers is described in Koole (2013,
Chapter 7).

Deslauriers et al. (2007) extend the earlier mentioned
papers by having different types of agents. Outbound jobs
are served only by multi-channel (blended) agents, whereas
inbound calls can be served by either inbound-only or
blended agents. Inbound callers may balk or abandon.
They evaluate several performance measures of interest,
including the rate of outbound jobs and the proportion of
inbound calls waiting more than a fixed number of seconds.
A collection of Continuous-Time Markov Chain (CTMC)
models that capture many real-world characteristics while
maintaining parsimony that results in fast computation are
presented. They discuss and explore the tradeoffs between
model fidelity and efficacy and compare different CTMC
models with a realistic simulation model of a Bell Canada
call center.

Armony and Ward (2010) present an optimization prob-
lem: the objective is to minimize the steady-state expected
customer waiting time subject to a fairness constraint on
the workload division. They show that in such a problem,
which is close to ours, a threshold policy outperforms a
common routing policy used in call centers (that routes to
the agent that has been idle the longest).

Milner and Olsen (2008) consider a call center with
contract and non-contract customers. They explore the
common use to give priority to contract customers only
in off-peak time periods. They show that this choice is a
good one under the classical assumptions (such as station-
arity). They also present examples when this is not the case.
This result is important since we found an insight arguing
that the service level for inbound calls has to be very strictly
respected during off-peak periods.

This article is organized as follows. Section 2 presents
our model. Sections 3 and 4 contain our results, first for a

constant arrival rate in Section 3 and then in Section 4 with
a fluctuating arrival rate. We end with a short conclusion.

2. Model

We consider a call center modeled as a multi-server queue-
ing system with two types of jobs, foreground jobs (inbound
calls) and background jobs (emails). The arrival process of
calls is assumed to be a non-homogeneous Poisson process
with rate λ(t), for t ≥ 0. Calls arrive at a dedicated First-
Come, First-Served (FCFS) queue with infinite capacity.
There is an infinite supply of background jobs, waiting for
treatment in a dedicated FCFS queue. There are s identi-
cal, parallel servers (agents in call center parlance). Each
agent can handle both types of jobs. We assume that the
service times of foreground and background jobs are ex-
ponentially distributed with rates μ and μ0, respectively.
Neither abandonment nor retrials are modeled.

Foreground jobs are more important than background
ones in the sense that the former request a quasi-
instantaneous answer (waiting time in the order of seconds
or minutes), wheres the latter are more flexible and can be
delayed for several (tens of) hours. The objective of the call
center manager over a working day is to maximize the email
throughput while satisfying a constraint on the call waiting
time in the queue.

Since the model is transient, we cannot define the waiting
time of an arbitrary customer as a unique random variable.
There is a random number of served customers during the
working period, say Q. If Q > 0, we denote by Wn the
random variable for the waiting time of customer n, for
n ∈ {1, . . . , Q}. We want the expected proportion of calls
that wait less than a predefined threshold τ to be at least
equals to α; i.e., E(Q−1∑Q

n=1 1Wn≤τ ) ≥ α, for τ ≥ 0 and
0 ≤ α ≤ 1. Note that we do not consider arriving customers
at the end of the working period that cannot be served.

We then aim to find the best routing rules in terms of ef-
ficiency for the considered problem and ease of implemen-
tation in call center software. We assume that preemption
of jobs in service is not allowed. This is a quite natural as-
sumption. An agent usually prefers to finish answering an
underway outbound job rather than starting it again later
on. This is also preferred from an efficiency perspective.
Evidently, when the background jobs are outbound calls,
then it is not acceptable to preempt.

For a similar model, but with a constant arrival rate and
equal service requirements for the two job types, Bhulai
and Koole (2003) prove that the optimal policy is a thresh-
old policy with the priority given to calls (some servers
reserved for calls). Their result is mainly based on the fact
that it is optimal to handle calls as long as the queue of
calls is not empty. For our general modeling, the analysis
is more complicated. Even for a constant arrival rate but
different service requirements, the optimal policy is hard to
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416 Legros et al.

obtain and might not be useful in practice (for software im-
plementation, for example). For simplicity and usefulness
of the results in practice, we restrict ourselves to the case of
threshold policies. Moreover, Bhulai and Koole (2003) nu-
merically show, for more general cases, that the appealing
threshold policies are good approximations of the optimal
ones. More concretely, the functioning of the call center
under a threshold policy is as follows. Let us denote the
threshold by u, 0 ≤ u ≤ s. Upon arrival, a call is immedi-
ately handled by an available agent, if any. If not, the call
waits in the queue. When an agent becomes idle, she han-
dles the call at the head of the queue with calls, if any. If not,
the agent may either handle an email or she remains idle. If
the number of idle agents (excluding her) is at least s − u,
then the agent in question handles an email. Otherwise, she
remains idle. In other words, there are s − u agents that are
reserved for calls, so there are at least u agents working at
any time.

In this article, we propose an adaptive threshold pol-
icy that adjusts the threshold as a function of the process
of the call service level. We divide the working day into
N identical intervals, each with length θ . The total work-
ing duration in a day is D, D = Nθ . At the beginning of
each interval i (i = 1, ..., N), we define the threshold ui ,
0 ≤ ui ≤ s, under which the job routing policy works dur-
ing interval i . Let T denote the expected throughput of
emails over the whole day; i.e., the ratio between the num-
ber of treated emails and D. Let also SL be the propor-
tion, for the whole day, of calls that have waited less than
τ , SL = E(Q−1∑Q

n=1 1Wn≤τ ), where Q is the random vari-
able measuring the number of served customers during the
whole day. In summary, our optimization problem can be
formulated as {

Maximize T

subject to SL ≥ α,
(1)

where the decision variables are ui with 0 ≤ ui ≤ s, for i =
1, . . . , N. It is clear that the best case for calls is such that
ui = 0 for all i , which means that no emails are answered
and SL is maximized (case of an M(t)/M/s with only calls).
We therefore assume from now on that the parameters λ(t)
for t ≥ 0, μ and s are such that SL ≥ α for ui = 0 (i =
1, . . . , N).

3. Constant arrival rate

We consider a basic case with a constant arrival rate,
λ(t) = λ for t ≥ 0 and a constant threshold, ui = u for
i = 1, . . . , N and 0 ≤ u ≤ s. The purpose of the analysis
in this section is to understand the behavior of the per-
formance measures as a function of the threshold in order
to build an efficient method for the threshold adaptation
rule (ui for i = 1, . . . , N) in the case of a non-constant
arrival rate. In Section 3.1 we propose a method to com-

pute the performance measures, then in Section 3.2 we use
them to provide a useful insight to construct our adaptive
policy.

3.1. Performance measures

In Section 3.1.1 we provide closed-form formula of the
performance measures in the case of equal service rates
and study the form of these measures as a function of the
threshold. Then in Section 3.1.2 we propose a numerical
method to compute the performance measures in the case of
unequal service rates. Since we consider a stationary model
we can define a unique random variable for the waiting
time of an arbitrary customer W and denote by P(W < τ )
the probability that an arbitrary customer waits less than τ

(τ > 0).

3.1.1. Equal service rates
We consider the case μ = μ0. First, we compute the perfor-
mance measures of interest for calls and emails for a given
constant reservation threshold, denoted by u, 0 ≤ u ≤ s.
We then develop some structural results that will be used
in Section 3.2.

Let us define the stochastic process {x(t), t ≥ 0}, where
x(t) ∈ {u, u + 1, u + 2, · · · } is the number of jobs in service
plus the number of jobs in the queue of calls. Since μ =
μ0, we need not distinguish between the two job types in
service. The process {x(t), t ≥ 0} is a birth–death process.
It is similar to that of an M/M/s queue without the states
{0, 1, · · · , u − 1}. The transition rate from state x to state
x − 1 is min{x, s}μ, for x > u, and that from state x to
state x + 1 is λ, for x ≥ u. We denote by a the ratio λ

μ
. Also,

under the stability condition λ
sμ < 1, we denote by px the

steady-state probability to be in state x ∈ N. In Theorem 1,
we give the expression of the email throughput, T(s, u, a),
and that of the probability that the call waiting time is less
than τ , SL = P(W < τ ).

Theorem 1. For 0 ≤ u ≤ s, we have

T(s, u, a) =μ

(
s−u∑
k=0

aku!
(u + k)!

+ as−uu!
s!

a
s − a

)−1

×
(

u+
s−u∑
k=1

aku!
(u + k − 1)!

+ as−u+1u!
(s − 1)!(s − a)

)
−λ,

(2)

P(W < τ ) = 1 − C(s, u, a)e−τ (sμ−λ), (3)

with

C(s, u, a) = as−uu!
s!(1 − a/s)

(
s−u∑
k=0

aku!
(u + k)!

+ as−uu!
s!

a
s − a

)−1

.

(4)
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Fig. 1. E-mail throughput (s = 10, μ0 = μ = 0.2, λ = 1.4).

Proof. For 0 ≤ x < u, we have px = 0. For 0 ≤ k ≤ s − u,
we have pu+k = aku!

(u+k)! pu . For k ≥ 0, we have ps+k = ak

sk ps .
Since all probabilities sum up to one, we obtain

pu =
(

s−u∑
k=0

aku!
(u + k)!

+ as−uu!
s!

a
s − a

)−1

. (5)

The email throughput can be seen as the overall throughput
(of calls and emails) minus the call throughput. Thus,

T(s, u, a) =
s−u∑
k=0

(u + k)μpu+k + sμ
∞∑

k=1

ps+k − λ.

After some algebra, we deduce that

T(s, u, a) =μpu

(
u +

s−u∑
k=1

aku!
(u + k − 1)!

+ as−u+1u!
(s − 1)!(s − a)

)
− λ.

Note that the lower bound of T(s, u, a) is T(s, 0, a) = 0,
which corresponds to the case when all servers are reserved
for calls. As for the upper bound, it is T(s, s, a) = sμ − λ,
which corresponds to the case of no server reservation for
calls (the infinite amount of emails leads to sμ as a total
throughput for the two job types).

The call service level, P(W > τ ), is obtained using the
PASTA property. We have P(W > τ ) = ∑∞

n=0 ps+n P(W >

τ |x = n + s), where P(W > τ |x = s + n) is the conditional
probability that the waiting time of a new call exceeds
τ , given that it finds all servers busy and n calls wait-
ing ahead in the queue, n ≥ 0. It is easy to see that
this conditional waiting time follows an Erlang distribu-
tion with n + 1 stages and a rate of sμ per stage. Then,
P(W > τ |x = s + n) = ∑n

k=0 e−sμτ (sμτ )k

k! , which leads to

P(W > τ ) =
∞∑

n=0

ps
an

sn

n∑
k=0

e−sμτ (sμτ )k

k!

= lim
n→∞

(
pse−sμτ

n∑
k=0

∞∑
n=k

(sμτ )k

k!

(a
s

)n
)

.

Observing that
∑∞

n=k

( a
s

)n = ( a
s

)k 1
1−a/s implies

P(W > τ ) = C(s, u, a)e−τ (sμ−λ), (6)

with

C(s, u, a) = ps

1 − a/s
= as−uu!

s!(1 − a/s)

×
(

s−u∑
k=0

aku!
(u + k)!

+ as−uu!
s!

a
s − a

)−1

. (7)

Note that the upper bound of C(s, u, a) is C(s, s, a) = 1
(no server reservation for calls, then, any arriving call has
to wait for service), and its lower bound is C(s, 0, a) =

as

s!(1−a/s) (
∑s

k=0
ak

k! + as+1

s!(s−a) )
−1; that is, all servers are reserved

for calls, which corresponds for calls to a standard M/M/s
queue with no emails. This completed the proof of the
theorem. �

In Proposition 1, we prove monotonicity results of
the system performance measures as a function of the
threshold.

Proposition 1. For a > 0, the following holds:

1. The email throughput T is strictly increasing and neither
convex nor concave in u, for 0 ≤ u ≤ s. However, the end
of the email throughput, for 0 ≤ s − 2 ≤ u ≤ s, is concave
in u.

2. The call service level P(W < τ ) is strictly decreasing and
concave in u, for 0 ≤ u ≤ s.

Proof. Let us prove the first statement. From Equation (2),
we have

T(s, u, a)

= μ

1
(u−1)! + a

u! + a2

(u+1)! + · · · + as−u

(s−1)! + as−u+1

(s−1)!(s−a)

1
u! + a

(u+1)! + a2

(u+2)! + · · · + as−u−1

(s−1)! + as−u

(s−1)!(s−a)

− λ,

for 0 ≤ u ≤ s. Thus T(s, u, a) = μ(a + 1
gu

) − λ, with

gu =1
u

+ a
u(u + 1)

+ · · · + as−u−1

u(u + 1)(u + 2) · · · (s − 1)

+ as−u

u(u + 1)(u + 2) · · · (s − 1)(s − a)
,

D
ow

nl
oa

de
d 

by
 [

E
co

le
 C

en
tr

al
e 

Pa
ri

s]
 a

t 1
2:

36
 1

5 
M

ar
ch

 2
01

5 



418 Legros et al.

for 0 < u ≤ s (and T(s, 0, a) = 0). We may write for 0 <

u < s:

gu+1 − gu =
(

1
u + 1

− 1
u

)

+
(

a
(u + 1)(u + 2)

− a
u(u + 1)

)
+ · · ·

+
(

as−u−1

(u + 1)(u + 2) · · · (s − 1)(s − a)

− as−u−1

u(u + 1) · · · (s − 1)

)

+
(

− as−u

u(u + 1) · · · (s − 1)(s − a)

)
. (8)

Since each term of the summation in the right-hand side of
Equation (8) is strictly negative, gu+1 < gu for 0 < u < s.
Then, gu is strictly decreasing in u for 0 < u ≤ s. We
also have T(s, 1, a) > 0 = T(s, 0, a). This implies that
T(s, u, a) is strictly increasing in u, for 0 ≤ u ≤ s. Figure
1 illustrates that in general the throughput is neither
convex nor concave. Let us now prove that the end of
the email throughput, for s − 2 ≤ u ≤ s and a > 0, is
concave in u. For s ≥ 2, we have T(s, s, a) = sμ − λ, T(s,
s − 1, a) = μ

s (s2 − s + a) − λ, and T(s, s − 2, a) =
μ

s2−s+a (s3 − 3s2 + 2(a + 1)s − 2a + a2) − λ. This im-

plies T(s, s − 1, a) − T(s, s − 2, a) = μ(s−1)
s(s2−s+a) (s

2 − a2),
and T(s, s, a) − T(s, s − 1, a) = μ

s (s − a), which
gives T(s, s − 1, a) − T(s, s − 2, a) = (T(s, s, a) −
T(s, s − 1, a)) (s−1)(s+a)

s2−s+a . Since for s ≥ 2 and a > 0,
(s − 1)(s + a) − (s2 − s + a) = a(s − 2) ≥ 0, we may write
T(s, s − 1, a) − T(s, s − 2, a) ≥ T(s, s, a) − T(s, s − 1, a).
Then the end of the throughput is concave, which finishes
the proof of the first statement of the proposition.

In what follows, we prove the second statement of the
proposition. Let us define the sequence fu as fu = s!(1 −
a/s)C(s, u, a), for 0 ≤ u ≤ s. Using Equation (3), it suffices
then to prove that fu is strictly increasing and convex in u.
We start by proving that fu is strictly increasing in u. We
have

fu =
(

a
s!(s − a)

+
s−u∑
k=0

ak+u−s

(u + k)!

)−1

,

for 0 ≤ u ≤ s. Since for 0 ≤ u < s we have∑s−u
k=0

ak+u−s

(u+k)! = au−s(
∑s−u

k=0
ak

(u+k)! ) and
∑s−(u+1)

k=0
ak+u+1−s

(u+1+k)! =
au−s(

∑s−u
k=1

ak

(u+k)! ), we deduce that f −1
u+1 − f −1

u = − au−s

u! < 0.
This implies that fu < fu+1, for 0 ≤ u < s. Then,
P(W < τ ) is strictly decreasing in u, for 0 ≤ u ≤ s.

We next focus on the proof of convexity of fu in
u (for s ≥ 2). We do so by proving that fu + fu+2 −
2 fu+1 > 0, for 0 ≤ u ≤ s − 2. Since fu + fu+2 − 2 fu+1 =
fu fu+1 fu+2( f −1

u+2 f −1
u+1 + f −1

u+1 f −1
u − 2 f −1

u+2 f −1
u ), it suffices to

prove that f −1
u+2 f −1

u+1 + f −1
u+1 f −1

u − 2 f −1
u+2 f −1

u > 0, for 0 ≤

u ≤ s − 2. Observing that f −1
u+1 = f −1

u − au−s

u! and f −1
u+2 =

f −1
u − au−s

u! − au+1−s

(u+1)! , we obtain

f −1
u+2 f −1

u+1 + f −1
u+1 f −1

u − 2 f −1
u+2 f −1

u

=
(

f −1
u − au−s

u!
− au+1−s

(u + 1)!

)(
f −1
u − au−s

u!

)

+
(

f −1
u − au−s

u!

)
f −1
u −2

(
f −1
u −au−s

u!
− au+1−s

(u + 1)!

)
f −1
u

= au−s

u!

(
f −1
u

(
−1 + a

u + 1

)
+ au−s

u!

(
1 + a

u + 1

))
,

for 0 ≤ u ≤ s − 2.
Since au−s

u! > 0, we thus need to prove that

f −1
u

(
−1 + a

u + 1

)
+ au−s

u!

(
1 + a

u + 1

)
> 0,

for 0 ≤ u ≤ s − 2. Using Equation (5), we may write f −1
u =

au−s

u! p−1
u , for 0 ≤ u ≤ s − 2. Therefore,

f −1
u

(
−1 + a

u + 1

)
+ au−s

u!

(
1 + a

u + 1

)

= au−s

u!

(
p−1

u

(
−1 + a

u + 1

)
+ 1 + a

u + 1

)
,

for 0 ≤ u ≤ s − 2. It remains then to prove that

p−1
u

(
−1 + a

u + 1

)
+ 1 + a

u + 1
> 0,

for 0 ≤ u ≤ s − 2.
For 0 ≤ u ≤ s − 2 and 0 < a < s, the derivative in a of

p−1
u (.) is given by

∂p−1
u

∂a
=

s−u∑
k=0

kak−1u!
(u + k)!

+ u!
s!

(s − u + 1)as−u(s − a) + as−u+1

(s − a)2

=
s−u∑
k=0

kak−1u!
(u + k)!

+ u!
s!

as−u ((s − u + 1)(s − a) + a)
(s − a)2

.

Since 0 < a < s and u < s, we obtain ∂p−1
u

∂a > 0. Thus, p−1
u is

strictly increasing in a and, as a consequence, the expression
p−1

u (−1 + a
u+1 ) + 1 + a

u+1 is strictly increasing in a, for 0 ≤
u ≤ s − 2 and 0 < a < s. Moreover, we have

lim
a → 0, a > 0

p−1
u = lim

a → 0, a > 0

(
s−u∑
k=0

aku!
(u + k)!

+as−uu!
s!

a
s − a

)
.

Since

lim
a → 0, a > 0

as−uu!
s!

a
s − a

= 0, and

lim
a → 0, a > 0

s−u∑
k=0

aku!
(u + k)!

= 1,
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we get

lim
a → 0, a > 0

p−1
u = 1.

This implies

lim
a → 0, a > 0

p−1
u

(
−1 + a

u + 1

)
+ 1 + a

u + 1
= 0,

0 ≤ u ≤ s − 2. Using now the fact that p−1
u (−1 + a

u+1 ) +
1 + a

u+1 is strictly increasing in a, we deduce that p−1
u (−1 +

a
u+1 ) + 1 + a

u+1 > 0, for a > 0 and 0 ≤ u ≤ s − 2. This
completes the proof of the proposition. �

Note that in the particular remaining case a = 0 (i.e.,
no calls, λ = 0), the email throughput T is increasing and
linear in u. We have T = uμ, for 0 ≤ u ≤ s.

3.1.2. Unequal service rates
In this section we focus on the performance evaluation
(email throughput and call waiting time distribution) for
the case of unequal service rates, μ 	= μ0. In contrast with
the case of equal service rates, the performance expres-
sions are here too cumbersome to allow the development
of useful structural results. The results of this section are,
however, still useful for the numerical experiments in Sec-
tion 3.2 in order to build insights on the threshold policy
for the more general case with a non-constant call arrival
rate.

As in Bhulai and Koole (2003), our approach consists
in using a Markov chain analysis to derive the steady-
state probabilities of the system, from which the perfor-
mance measures are characterized thereafter. To simplify
the presentation, we focus on the particular case u = s.
The analysis for the case u = 0 is obvious, and that of
the remaining cases, 0 < u < s, is done similarly to the
case u = s. It simply adds a finite number of additional
equations but does not impact the general form of the
steady-state probabilities. Consider the stochastic process
{(x(t), y(t)), t ≥ 0}, where x(t) is the number of waiting calls
in the queue and y(t) is the number of emails being in
service, x ∈ N, y ∈ {0, 1, · · · , s}. This process is a Markov
chain. For x ≥ 0 and 0 ≤ y ≤ s, the transition rate from
(x, y) to (x + 1, y) is λ. For x ≥ 1 and 0 ≤ y ≤ s, the transi-
tion rate from (x, y) to (x − 1, y) is (s − y)μ. For x ≥ 1 and
1 ≤ y ≤ s the transition rate from (x, y) to (x − 1, y − 1)
is yμ0. For 0 ≤ y ≤ s, the transition rate from (0, y) to
(0, y + 1) is (s − y)μ. Due to the priority of inbound calls
over emails, no transition exists from (x, y) to (x, y − 1), for
x > 0 and 1 ≤ y ≤ s. Under the stability condition λ

sμ < 1,
we denote by px,y the steady-state probability that the sys-
tem is in state (x, y). Thanks to the Markov chain structure,
we solve the steady-state equations using standard results
from the theory of linear difference equations (see, for ex-
ample, Queffélec and Zuily (2013)).

For y = s and x > 0, we have px,s(λ + sμ0) = λpx−1,s .
Then px,s = ( λ

λ+sμ0
)x p0,s . For 0 ≤ y < s, and x > 0 we

have

(λ + (s − y)μ + yμ0)px,y = λpx−1,y + (s − y)μpx+1,y

+(y + 1)μ0 px+1,y+1. (9)

The homogeneous equation associated with Equation (9)
is

(s − y)μz2 − (λ + (s − y)μ + yμ0)z + λ = 0, (10)

with z as a variable for z ∈ C. It has two solutions denoted
by zy and z′

y and are given by

zy = 1
2(s − y)μ

(λ + (s − y)μ + yμ0

−
√

(λ + (s − y)μ + yμ0)2 − 4(s − y)λμ

)
, (11)

z′
y = 1

2(s − y)μ
(λ + (s − y)μ + yμ0

+
√

(λ + (s − y)μ + yμ0)2 − 4(s − y)λμ

)
, (12)

for 0 ≤ y < s. In Proposition 2, we provide the intervals
where zy and z′

y are ranging.

Proposition 2. For 0 ≤ y < s, we have 0 ≤ zy < 1 and z′
y >

1.

Proof. Let us first prove that z′
y > 1. We have μ0 > 0. Since

z′
y increases in μ0, Equation (12) implies

z′
y >

1
2(s − y)μ

(λ + (s − y)μ

+
√

(λ + (s − y)μ)2 − 4(s − y)λμ

)
. (13)

Observing that (λ + (s − y)μ)2 − 4(s − y)λμ = (λ − (s −
y)μ)2, Inequality (13) becomes

z′
y >

1
2(s − y)μ

(λ + (s − y)μ + |λ − (s − y)μ|) ,

where |t| is the absolute value of t, for t ∈ R. Con-
sider the case λ ≤ (s − y)μ, thus |λ − (s − y)μ| = −λ +
(s − y)μ, which leads to z′

y > 1. Consider now the re-
maining case; i.e., λ > (s − y)μ. Then |λ − (s − y)μ| =
λ − (s − y)μ, which implies z′

y > λ
(s−y)μ > 1. In summary,

we have z′
y > 1.

Let us now prove that 0 ≤ zy < 1. From Equation (10),
we may write (s − y)μzyz′

y = λ. Since λ ≥ 0 and z′
y > 1 >

0, we obtain zy ≥ 0.
In what follows, we prove that 0 ≤ zy < 1. For λ = 0 we

have zy = 0, then the result immediately follows. For λ > 0,
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420 Legros et al.

the derivative of zy in μ0 is given by

∂zy

∂μ0
=

y
(√

(λ + (s − y)μ + yμ0)2 − 4(s − y)λμ − (λ + (s − y)μ + yμ0)
)

2(s − y)μ
√

(λ + (s − y)μ + yμ0)2 − 4(s − y)λμ
,

for μ0 > 0. It is straightforward to see that the numerator is
strictly negative, for λ > 0, and the denominator is strictly
positive. Therefore, zy is strictly decreasing in μ0. Equation
(11) then implies

zy <
1

2(s − y)μ
(λ + (s − y)μ

−
√

(λ + (s − y)μ)2 − 4(s − y)λμ

)
, (14)

for μ0 > 0. Using the same discussion as that after Inequal-
ity (13), we deduce that zy < 1. This completes the proof
of the proposition. �

Because of the last term on the right-hand side
of Equation (9) and the fact that the 2(s + 1) roots
z0, z1, · · · , zs, z′

0, z′
1, · · · , z′

s are all distinct, px,y can be writ-
ten as a linear combination of zx

i and z′x
i for y ≤ i ≤ s.

Since z′
y > 1, the convergence of the stationary probabili-

ties forces the linear factors of z′x
y to be all equal to zero.

We therefore obtain, for 0 ≤ y ≤ s and x ≥ 0:

px,y =
s∑

i=y

Ai,yzx
i , (15)

with zs = λ
λ+sμ0

and Ai,y ∈ R for 0 ≤ y ≤ s and y ≤ i ≤ s.
The stationary probabilities are now written as a function
of a finite number of unknown parameters, namely, the Ai,y
for 0 ≤ y ≤ s and y ≤ i ≤ s. In what follows, we compute
these (s+1)(s+2)

2 parameters. Using Equation (9), we obtain

Ai,y+1 = Ai,y
−(s − y)μz2

i + (λ + (s − y)μ + yμ0)zi − λ

(y + 1)μ0z2
i

,

(16)
for 0 ≤ y < i ≤ s. Recall that zi is a root of the equation
(s − i )μz2 − (λ + (s − i )μ + iμ0)z + λ = 0. Thus,

Ai,y
−(s − i )μz2

i + (λ + (s − i )μ + iμ0)zi − λ

(y + 1)μ0z2
i

= 0.

Subtracting this quantity from the right-hand side of Equa-
tion (16) leads to

Ai,y+1 = Ai,y
(i − y)(μ(1 − zi ) − μ0)

(y + 1)μ0zi
, (17)

for 0 ≤ y < i ≤ s. Therefore,

Ai,y = Ai,i

i−1∏
k=y

(k + 1)μ0zi

(i − k)(μ(1 − zi ) − μ0)

= Ai,i

(
μ0zi

μ(1 − zi ) − μ0

)i−y i !
y!(i − y)!

(18)

= Ai,i

(
μ0zi

μ(1 − zi ) − μ0

)i−y ( i
y

)
,

for 0 ≤ y < i < s. Thus, it remains to compute the s + 1
parameters Ay,y, for 0 ≤ y ≤ s. Using Equation (15), we
obtain p0,s = As,s and p0,s−1 = As−1,s−1 + As,s−1. From
Equation (18), we may write As,s−1 = As,s

sμ0zs
μ(1−zs )−μ0

. Using

now the boundary equation λp0,s = μp0,s−1 and zs = λ
λ+sμ0

implies the following relation between As−1,s−1 and As,s :

As−1,s−1 = As,s
λ

μ

λ + sμ0

λ + s(μ0 − μ)
. (19)

The other boundary equations are

p0,y(λ + (s − y)μ) =(s − y)μp1,y + (y + 1)μ0 p1,y+1

+ (s − y + 1)μp0,y−1, (20)

for 0 < y < s. Using Equation (15), we have p0,y =∑s
i=y Ai,y, p1,y = ∑s

i=y Ai,yzi , and p1,y+1 = ∑s
i=y+1

Ai,y+1zi . Then, using Equation (17) we ob-
tain p1,y+1 = ∑s

i=y+1 Ai,y
(i−y)(μ(1−zi )−μ0)

(y+1)μ0
. Thus,

p0,y(λ + (s − y)μ) − (s − y)μp1,y − (y + 1)μ0 p1,y+1 =∑s
i=y Ai,y(λ + (s − i )μ(1 − zi ) + (i − y)μ0), for 0 < y < s.

Moreover, using Equation (18) implies

p0,y(λ + (s − y)μ) − (s − y)μp1,y − (y + 1)μ0 p1,y+1 (21)

=
s∑

i=y

Ai,i

(
μ0zi

μ(1 − zi ) − μ0

)i−y ( i
y

)
(λ + (s − i )μ(1 − zi )

+ (i − y)μ0),

for 0 < y < s. Finally we deduce from Equation (20) that

Ay−1,y−1 =
s∑

i=y

Ai,i

(
μ0zi

μ(1 − zi ) − μ0

)i−y ( i
y

)

×
(

λ + (s − i )μ(1 − zi ) + (i − y)μ0

(s − y + 1)μ

− y
i − y + 1

μ0zi

μ(1 − zi ) − μ0

)
, (22)

for 0 < y < s. Note that this expression is also true for
y = s; replacing y by s in Equation (22) leads to Equation
(19). Since all probabilities sum up to one, we have

s∑
y=0

s∑
i=y

Ai,i

1 − zi

(
μ0zi

μ(1 − zi ) − μ0

)i−y ( i
y

)
= 1. (23)

Equations (19), (22), and (23) form a system of s + 1 in-
dependent linear equations that can be easily numerically

D
ow

nl
oa

de
d 

by
 [

E
co

le
 C

en
tr

al
e 

Pa
ri

s]
 a

t 1
2:

36
 1

5 
M

ar
ch

 2
01

5 



Adaptive routing in call centers 421

solved and leads to the coefficients Ai,i , for 0 ≤ i ≤ s. This
finishes the characterization of all steady-state probabili-
ties, px,y, for x ≥ 0 and 0 ≤ y ≤ s.

The email throughput T(λ, μ, μ0, s) may be written as

T(λ, μ, μ0, s) = μ0

s∑
y=1

∞∑
x=0

ypx,y (24)

= μ0

s∑
y=1

s∑
i=y

yAi,y

1 − zi
.

From the stability condition on inbound calls, we may write

λ =
s∑

y=0

∞∑
x=0

(s − y)μpx,y

or, equivalently,

λ = μ

⎛
⎝s

s∑
y=0

∞∑
x=0

px,y −
s∑

y=0

∞∑
x=0

ypx,y

⎞
⎠ .

Since
∑s

y=0

∑∞
x=0 px,y = 1 and

∑s
y=0

∑∞
x=0 ypx,y =

T(λ,μ,μ0,s)
μ0

we obtain T(λ, μ, μ0, s) = μ0(s − λ
μ

). Note that
for μ0 = μ, the result here coincides with that of the
previous section; i.e., T(λ, μ, μ, s) = sμ − λ.

As for the call waiting performance, it is given by

P(W > τ ) =
s∑

y=0

∞∑
x=0

px,y P(W > τ |(x, y)),

where P(W > τ |(x, y)) is the conditional probability that
the waiting time of a new call exceeds τ , given that it finds
y emails in service, s − y calls in service, and x calls wait-
ing ahead of it in the queue, for 0 ≤ y ≤ s and x ≥ 0. The
computation of P(W > τ |(x, y)), for 0 ≤ y ≤ s and x ≥ 0,
is as follows. For x = 0 and 0 ≤ y ≤ s, the new call has
to wait for a service completion of one of the y emails, or
one of the s − y calls, so P(W > τ |(0, y)) = e−τ (yμ0+(s−y)μ).
For x = 1 and 0 < y ≤ s, the probability that the next ser-
vice completion is that of an email is yμ0

yμ0+(s−y)μ . Thus,
the waiting time of the new call follows a hypoexpo-
nential distribution consisting of the summation of two
exponential random variables with rates yμ0 + (s − y)μ
and (y − 1)μ0 + (s − y + 1)μ with probability yμ0

yμ0+(s−y)μ ,
and it follows an Erlang distribution with two phases
and yμ0 + (s − y)μ as a rate per stage with probability
1 − yμ0

yμ0+(s−y)μ . This leads to

P(W > τ |(1, y))

= yμ0

yμ0 + (s − y)μ

× ((y − 1)μ0 + (s − y)μ)e−τ (yμ0+(s−y)μ) − (yμ0 + (s − y)μ)e−τ ((y−1)μ0+(s−y)μ)

μ − μ0

+ (s − y)μ
yμ0 + (s − y)μ

e−τ (yμ0+(s−y+1)μ)(1 + τ (yμ0 + (s − y)μ)),

for 0 ≤ y ≤ s. One can continue in the same way to derive
all of the conditional waiting time probabilities for x > 1,

which finishes the characterization of the performance mea-
sures (email throughput and call waiting time distribution)
in the case of unequal service rates.

3.2. Construction of the adaptative threshold policy

In this section, we use the performance evaluation results
to find an insight on how we should adapt the threshold as
a function of the intensity of the call arrivals. The objective
is to maximize the throughput of emails while reaching the
constraint on the call waiting times for the whole day. We
find that during the periods with low demand, the need to
have a good service level is more important than during the
periods with high demand. On the basis of this observation,
we build a method for adapting the threshold. We then
evaluate this method by comparing it with the optimal
threshold policy.

3.2.1. Numerical observations
For a given time interval long enough to reach the station-
ary regime, one can use the results of Section 3.1 to obtain
the optimal threshold, denoted by u∗, for Problem (1). Con-
sider now a working day with two time intervals, each with
a different call arrival rate and on each of which the sta-
tionary regime is reached. Following common practice and
most call center models in the literature, it is appropriate
to assume that a system with constant parameters achieves
a steady-state quickly within short—half hour or hour—
intervals (Green et al., 2001; Gans et al., 2003).

We want to find the optimal couple of thresholds that
answers our optimization problem, where the call service
level constraint is for the whole day. We denote the pro-
portion of the length of the first (second) time interval by
I1 (I2) and the corresponding mean arrival rate by λ1 (λ2).
We have I1 + I2 = 1. Without loss of generality, we con-
sider cases where λ1 ≤ λ2. In Table 1, we consider various
scenarios for arrival rates, service rates, and relative time
durations between the two intervals. Using the results of
Section 3.1, we give the optimal threshold of each inter-
val in isolation; i.e., the highest threshold that verifies the
service-level constraint. They are denoted by u∗

1 and u∗
2 for

I1 and I2, respectively. The symbol “—” in Table 1 is used
for the cases where the call service level can not be met, even
with a threshold equal to zero. We also evaluate the couple
of thresholds which answers Problem (1) on the set of the
two intervals. This couple is found by an exhaustive test of
all the possible values for the couple (u1, u2). We denote
by (u1, u2)∗ this optimal couple. Note that for this couple,
Problem (1) does not have to be answered on each interval
but rather on the set of the two intervals. Finally, we give
the performance measures for each interval and for the set
of the two intervals for the couple (u1, u2)∗. In summary,
our optimization problem can be formulated as finding the
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422 Legros et al.

Fig. 2. Sensitivity of the service level (s = 10, τ = 30 seconds,
μ = μ0 = 0.2).

best couple (u1, u2) that answers the following problem:{
Maximize I1Tλ1 (u1) + I2Tλ2 (u2),

subject to I1
λ1

λ1+λ2
SLλ1 (u1) + I2

λ2
λ1+λ2

SLλ2 (u2) ≥ α.

(25)

An important observation from Table 1 is that the choices
for the threshold are done for values of u close to s. The
reason for this is related to the concavity of the call service
level (see Proposition 1). We observe three possible situa-
tions corresponding to the three parts of Table 1. In the first
situation u∗

1 (respectively u∗
2) is always higher or equal to

u1 (respectively lower or equal to u2) for the optimal cou-
ple (u1, u2)∗. In the second one we have (u1, u2)∗ = (u∗

1, u∗
2).

In the last situation u∗
1 (respectively u∗

2) is always lower
or equal to u1 (respectively higher or equal to u2) for the
optimal couple (u1, u2)∗.

Although the first situation does not seem to be the most
intuitive one, it corresponds to most cases. In order to re-
spect the overall call service level, we observe that we should
strictly respect the service level during the interval with a
small arrival rate (I1), and more flexibility is accepted when
the arrival rate is high (I2). In what follows, we explain why
this insight holds in most practical cases. We first justify that
|�SL(u)| (�SL(u) = SL(u + 1) − SL(u) for 0 ≤ u < s) is
decreasing in the workload in most practical cases. Second,
using this assumption we prove that there is less waste for
the call service level, when increasing the threshold during
higher workload periods. Finally, we derive the required
conditions under which the insight does hold.

Figure 2 reveals that, as the workload increases, the sen-
sitivity of the service level for a given threshold (�SL(u) =
SL(u + 1) − SL(u) for 0 ≤ u < s) first increases and then
decreases. In Lemma 1, we prove for μ = μ0 that the last
part of the curves |�SL(u)| decreases in the workload. Ta-
ble 2 provides some numerical illustrations for the value
of a/s above which the curve |�SL(u)| decreases in a. We
observe for this example that the values of a/s are lower
than 80%. In practice, the agent utilization in call centers
is usually higher than 80% (see Koole (2013)). If a situ-
ation with a low workload happens, the threshold would

increase and reach its maximal values (u = s − 1 or u = s).
Since the last part of the curves |�SL(u)| as function of
the workload decreases, the practical situations are likely
to be those where the sensitivity of SL(u) decreases in the
workload.

Lemma 1. The following holds for μ = μ0, 0 ≤ a ≤ s and
s ≥ 2.

1. |�SL(s − 1)| is decreasing in a if s − 1
τμ

≤ 0, otherwise
|�SL(s − 1)| is first increasing then decreasing in a.

2. There exists a value of a, 0 < a < s, above which
|�SL(u)| is decreasing in a, for 0 ≤ u < s − 1.

Proof. Using Theorem 1, we have |�SL(u)| = |SL(u +
1) − SL(u)| = e−τ sμ(1−a/s)|C(s, u + 1, a) − C(s, u, a)|, for
0 ≤ u ≤ s − 1. Let us now prove the first statement of the
Lemma. Replacing u by s − 1 in Equation (3) leads to

C(s, s − 1, a) = as−(s−1)(s − 1)!
s!(1 − a/s)

⎛
⎝s−(s−1)∑

k=0

ak(s − 1)!
((s − 1) + k)!

+as−(s−1)(s − 1)!
s!

a
s − a

)−1

= a/s
(1 − a/s)

(
1 + a/s + (a/s)2 1

1 − a/s

)−1

= a/s,

for 0 ≤ a ≤ s. We also have C(s, s, a) = 1. Thus, |�SL(s −
1)| = e−τ sμ(1−a/s)(1 − a/s), for 0 ≤ a ≤ s. We have

∂|�SL(s − 1)|
∂a

= 1
s

e−τ sμ(1−a/s)(−1 + (s − a)τμ),

for 0 ≤ a ≤ s. The expression −1 + (s − a)τμ decreases in
a. The equation −1 + (s − a)τμ = 0 in the variable a is
equivalent to a = s − 1

τμ
. If s − 1

τμ
≤ 0 then ∂|�SL(s−1)|

∂a ≤ 0
for 0 ≤ a ≤ s and |�SL(s − 1)| decreases in a. Otherwise,
if s − 1

τμ
> 0, |�SL(s − 1)| is first increasing from 0 to

s − 1
τμ

and then decreasing from s − 1
τμ

to s as a function

of a (0 ≤ a ≤ s). Note that s − 1
τμ

< s. We then deduce
that the last part of the curve of |�SL(s − 1)| is always
decreasing as a function of a.

We next prove the second statement. We can write
C(s, u, a) as C(s, u, a) = as−uu!

s!(1−a/s) pu . If 0 ≤ u < s, we have

lim a → 0, a > 0
as−uu!

s!(1 − a/s)
= 0.

From the proof of Proposition 1, we know that

lim a → 0, a > 0 pu = 1.

We then obtain

lim a → 0, a > 0 C(s, u, a) = 0,
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Adaptive routing in call centers 423

Table 1. Optimal couples of thresholds (s = 10, τ = 30 seconds, α = 80%)
λ1 λ2 μ μ0 I1(%) I2(%) u∗

1 u∗
2 (u1, u2)∗ P(W1 < τ)(%) P(W2 < τ)(%) P(W < τ)(%) T1 T2 T

1 1 0.2 0.2 50 50 8 8 (8, 8) 84.04 84.04 84.04 0.758 0.758 0.758
1 1.3 0.2 0.2 50 50 8 6 (8, 7) 84.04 77.99 80.62 0.758 0.401 0.580
0.5 1.5 0.2 0.2 50 50 9 — (8, 4) 96.81 74.79 80.30 1.169 0.055 0.611
1 1.3 0.2 0.2 67 33 8 6 (8, 7) 84.04 77.99 81.66 0.758 0.401 0.639
1 1.3 0.2 0.2 80 20 8 6 (8, 8) 84.04 69.15 80.39 0.758 0.552 0.711
0.5 1.5 0.2 0.2 90 10 9 — (9, 7) 88.19 63.94 82.13 1.350 0.277 1.243
1 1.5 0.2 0.2 50 50 8 — (7, 5) 90.92 72.93 80.13 0.604 0.111 0.357
1 1.5 0.2 1 50 50 10 — (10, 7) 89.34 74.94 80.70 5.191 0.961 3.076
1 1.5 0.2 1 80 20 10 — (10, 10) 89.34 67.56 83.40 5.191 2.908 4.734
1.3 1.4 0.2 1 50 50 9 8 (9, 9) 83.51 77.09 80.18 2.863 2.440 2.652
1.3 1.4 0.2 1 80 20 9 8 (9, 10) 83.51 68.19 80.26 2.863 3.621 3.014
1.3 1.4 1 0.2 80 20 9 9 (9, 10) 88.63 60.45 82.10 1.616 1.794 1.742
1.3 1.4 1 0.2 50 50 9 9 (9, 9) 88.63 87.77 88.18 1.616 1.598 1.601
0.5 1 0.2 0.2 50 50 9 8 (9, 8) 88.19 84.04 85.42 1.350 0.758 1.054
0.2 1 0.2 0.2 50 50 9 8 (10, 7) 59.34 90.92 85.66 1.800 0.604 1.202
0.1 1 0.2 0.2 50 50 9 8 (10, 8) 61.33 84.04 81.97 1.900 0.758 1.468
0.01 1 0.2 0.2 50 50 9 8 (10, 8) 63.03 84.04 83.83 1.990 0.758 1.513

for 0 ≤ u < s. We can also write C(s, u, a) as

C(s, u, a) =
(

a/s + s!(1 − a/s)
s−u∑
k=0

ak+u−s

(u + k)!

)−1

.

We have

lim a → s, a < s a/s + s!(1 − a/s)
s−u∑
k=0

ak+u−s

(u + k)!
= 1,

for 0 ≤ u ≤ s. Thus,

lim a → s, a < s C(s, u, a) = 1,

for 0 ≤ u ≤ s. Since we have e−τ sμ ≤ e−τ sμ(1−a/s) ≤ 1 for
0 ≤ a ≤ s, we obtain

lim a → s, a < s |�SL(u)| = lim a → 0, a > 0 |�SL(u)|
= 0,

for 0 ≤ u < s − 1.
Since |�SL(u)| is not zero, the curve of |�SL(u)| has at

least one extremum in the variable a for 0 < a < s. This
proves that there exists a value of a (0 < a < s) after which
|�SL(u)| decreases in a for 0 ≤ u < s − 1 and completes
the proof of the lemma. �

Assuming now that the sensitivity of the call service level
is decreasing in the workload, we prove in Proposition 3
that there is less waste for the call service level, when in-
creasing the threshold during higher workload periods. For
the call service level constraint in Problem (25), Corollary
1 completes Proposition 3 by providing the necessary con-
ditions under which it is better to increase the threshold
during high workload periods.

Proposition 3. If λ1 < λ2 and �SL(u) is decreasing in the
workload, then |�SLλ1 (u∗

1)| > |�SLλ2 (u∗
2)|.

Proof. We distinguish two cases; u∗
1 = u∗

2 or u∗
1 > u∗

2. The
other case u∗

1 < u∗
2 does not exist because λ1 < λ2. If u∗

1 =
u∗

2 then increasing u is less sensitive in SLλ2 than in SLλ1

since the sensitivity of SL is decreasing in the workload; i.e.,
|�SLλ1 (u∗

1)| > |�SLλ2 (u∗
2)|. Consider now the case u∗

1 >

u∗
2. Since SL is decreasing and concave in u (see Proposition

1), we deduce that SLλ1 is more sensitive to the increasing of
u starting from u∗

1 than starting from u∗
2; i.e., |�SLλ1 (u∗

1)| >

|�SLλ1 (u∗
2)|. Starting from u∗

2, SLλ1 is more sensitive to the
increasing of u than SLλ2 ; i.e., |�SLλ1 (u∗

2)| > |�SLλ2 (u∗
2)|.

As a consequence SLλ2 is less sensitive to the increasing of
u starting from u∗

2 than SLλ1 would be starting from u∗
1; i.e.,

|�SLλ1 (u∗
1)| > |�SLλ2 (u∗

2)|. �

Corollary 1. If I2|�SLλ2 (u∗
2)|

I1|�SLλ1 (u∗
1)|λ2 < λ1 < λ2 and �SL(u) is de-

creasing in the workload, there is less waste for the call service
level on the two intervals, when increasing the threshold dur-
ing the higher workload period.

Proof. Using Proposition 3 we know that |�SLλ1 (u∗
1)| >

|�SLλ2 (u∗
2)|, or

|�SLλ2 (u∗
2)|

|�SLλ1 (u∗
1)| < 1. We can then find val-

ues of λ1, λ2, I1, and I2 that satisfy the inequality.
I2|�SLλ2 (u∗

2)|
I1|�SLλ1 (u∗

1)|λ2 < λ1 < λ2, then with the first inequality we

have I2|�SLλ2 (u∗
2)|λ2 < I1|�SLλ1 (u∗

1)|λ1, and, finally:

I1
λ1

λ1 + λ2
|�SLλ1 (u∗

1)| > I2
λ2

λ1 + λ2
|�SLλ2 (u∗

2)|.

This finishes the proof of the corollary. �

Table 2. Value of a/s above which |�SL(u)| decreases in a (s = 10, τ = 30 seconds, μ = μ0 = 0.2)
u

0 1 2 3 4 5 6 7 8 9
a/s 0.56 0.62 0.67 0.72 0.73 0.74 0.74 0.67 0.53 0
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424 Legros et al.

Table 3. Interval of validity of Corollary 1 (λ2 = 1.3, s = 10, μ0 = μ = 0.2, τ = 30s, α = 80%)
λ1

0.01 0.1 0.25 0.5 0.75 1 1.25 1.29
|�SLλ2 (u∗

2)|
|�SLλ1 (u∗

1)|λ2 0.1834 0.1836 0.1850 0.1905 0.5603 0.4697 0.7810 0.76662
|�SLλ2 (u∗

2)|
|�SLλ1 (u∗

1)|λ2 < λ1 False False True True True True True True

In practice, the changes in the threshold are likely to be
made by the Automatic Call Distributer (ACD) at prede-
fined and equal intervals of time; i.e., I1 = I2. The condition
for the result in Corollary 1 to hold then becomes

|�SLλ2 (u∗
2)|

|�SLλ1 (u∗
1)| <

λ1

λ2
< 1.

Note that this condition does not happen only for the ex-
treme situations with very high differences between the
mean arrival rate values (λ1 << λ2). An illustration is given
in Table 3.

3.2.2. Our adaptive threshold policy
We propose for Problem (1) an Adaptive Threshold Pol-
icy (ATP) that adjusts the threshold as a function of the
call workload. This policy is based on the the first-, and
second-order monotonicity properties of the performance
measures as a function of the threshold u and on the obser-
vation drawn in Section 3.2.1. As mentioned in Section 2,
the threshold is re-evaluated at the beginning of each inter-
val i (i = 1, . . . , N). The threshold associated with interval
i is denoted by ui . The global service level for the whole day
(all N intervals) is denoted by SL, and the global one from
interval 1 to interval i is denoted by SLi , for i = 1, . . . , N.

If SLi is higher (lower) than α at the beginning of an in-
terval i (i = 2, . . . , N) then the policy increases (decreases)
the threshold. To update the threshold, we use a real pa-
rameter denoted by ci (i = 1, . . . , N). The threshold ui is
defined as the closest integer to ci , for i = 1, . . . , N. Note
that the parameter ci is chosen to be real in order to smooth
the change in the threshold ui . We start with u1 = c1 = s.
For i ≥ 2, if we need to increase the threshold (in the case
of SLi > α), then we consider ci = ci−1 + 1 − ci−1/s. If we
need to decrease the threshold (in the case where SLi < α),
then ci = ci−1 − ci−1/s. In the remaining case (SLi = α),
we consider ci = ci−1.

In what follows, we discuss the efficiency of how ATP
updates the threshold. The main two characteristics of ATP
are as follows:

1. An increasing (decreasing) of the threshold in case the
measured call service level is better (worse) than the
target service level.

2. A decreasing speed in the increasing (decreasing) of the
threshold when this threshold increases (decreases).

From Proposition 1, we know that the throughput increases
and the call service level decreases in u. Thus, the threshold
should be increased when the measured service level is bet-

ter than the target service level and vice versa. This justifies
the first characteristic of ATP.

The second characteristic of ATP is justified by the con-
vexity of the performance measures and the correlation
between them. Consider a situation with sufficiently high
call service levels; for example, during light workload pe-
riods. The threshold u should then reach high values close
to the number of agents. For high values of the threshold,
we know from Proposition 1 that the call service level is
decreasing and concave, and the email throughput is in-
creasing and concave in u. An illustration is given in Figs.
3(a) and 3(b). Therefore, increasing u would go with only a
little improvement in the email throughput and at the same
time a high loss in the call service level. This situation is well
managed by ATP. As u increases, ATP decreases the speed
of increasing u, which reduces the non-efficient situations
with high values of the threshold. Moreover, ATP behaves
as required by the insight derived in Section 3.2.1. From the
insight, we know that for the optimization problem (1) we
should strictly respect the call service level constraint dur-
ing light workload periods. ATP conservatively increases a
high threshold, which is the way to give importance to the
respect the call service level constraint.

Consider now a situation with poor call service levels;
for example, during high workload periods. The threshold
u should then reach small values. For small values of the
threshold, we know from Proposition 1 that the call service
level is decreasing and concave in u; i.e., almost in sensitive
to the decreasing of u. This does not hold for the email
throughput. An illustration is given in Figs. 3(c) and 3(d).
Therefore, decreasing u would go with only a little improve-
ment in the call service level and at the same time a high
loss in the email throughput. This situation is again well
managed by ATP. As u decreases, ATP decreases the speed
of decreasing u, which reduces the non-efficient situations
with small values of the threshold. Again, ATP behaves as
required by the insight derived in Section 3.2.1. From the
insight, we know that for the optimization problem (1) it is
tolerated to violate the call service level constraint during
high workload periods. ATP conservatively decreases a low
threshold, which is the way to give less importance to the
respect of the call service level constraint.

3.2.3. Evaluation of the ATP
In this section, we evaluate the quality of the ATP policy
by comparing it with the optimal one. First, we provide
the optimal threshold policy. Because of the discrete nature
of the threshold, one may see that the threshold should
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Adaptive routing in call centers 425

Fig. 3. Performance measures (s = 10, μ = μ0 = 0.2, τ = 0.5, α = 80%).

vary between two or more values. The reason for this is
that we need to exactly satisfy the constraint on calls in
Problem (1) in order to maximize the email throughput.
From Bhulai and Koole (2003), we know that to exactly
satisfy the constraint on calls, randomization is optimal for
threshold policies. For both cases μ0 = μ and μ0 	= μ, The-
orem 2 provides a weak condition that leads to the optimal
randomization policy between two threshold values. A ran-
domized threshold policy, between two thresholds u1 and
u2 and with a randomization parameter p ∈ [0, 1], works as
follows. At each event (an inbound call arrival or a service
completion), the value of the threshold value changes from
u1 to u2 with probability p, stays in u1 with probability
1 − p, changes from u2 to u1 with probability 1 − p, stays
in u2 with probability p.

Theorem 2. Consider 0 ≤ u1, u2 ≤ s such that SL(u1) ≤ α ≤
SL(u2). If there exists γ ∈ R for which randomizing between
u1 and u2 maximizes T(u) + γ SL(u) and leads to a call
service level exactly equal to α, then randomizing between u1
and u2 is optimal.

Proof. Let p ∈ [0, 1] be the parameter of random-
ization between u1 and u2. Assume that we can find

a couple (u3, u4) 	= (u1, u2) and a parameter of ran-
domization q ∈ [0, 1] such that the constraint on calls
is also saturated and SL(u3) ≤ α ≤ SL(u4). We have
pT(u1) + (1 − p)T(u2) + γ pSL(u1) + γ (1 − p)SL(u2) ≥
qT(u3) + (1 − q) T(u4) + γ q SL(u3) + γ (1 − q)SL(u4).
Since γ pSL(u1) + γ (1 − p)SL(u2) = γ q SL(u3) + γ (1 −
q)SL(u4) = γα, we deduce that pT(u1) + (1 − p)T(u2) ≥
qT(u3) + (1 − q)T(u4). Then the couple (u1, u2) is optimal,
which completes the proof. �

The randomization between two thresholds allows for
the constraint on calls to be met exactly. For our system with
constant parameters, we believe that the randomization is
between two successive thresholds. Since the throughput is
neither convex nor concave it is difficult to rigorously prove
this result. However, if we denote by u∗ (0 ≤ u∗ ≤ s) the
highest threshold that verifies SL(u∗) > α, we numerically
checked that with γ = − T(u∗+1)−T(u∗)

SL(u∗+1)−SL(u∗) (for 0 ≤ u∗ < s),
the expression T(u) + γ × SL(u) is strictly increasing from
u = 0 to u = u∗, strictly decreasing from u = u∗ + 1 to u =
s and T(u∗) + γ SL(u∗) = T(u∗ + 1) + γ SL(u∗ + 1). Then
for all of the considered numerical situations the optimal
policy is a randomization between two adjacent values
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426 Legros et al.

Table 4. Comparison under the steady-states assumption (θ=15 minutes)
Optimal c Optimal T ATP T Difference (%)

Scenario 1
(λ = 4, μ = μ0 = 0.2, s = 28) 25.49 1.39 1.37 1.46
Scenario 2
(λ = 0.02, μ = μ0 = 0.2, s = 1) 0.13 0.02 0.02 0.00
Scenario 3
(λ = 18, μ = μ0 = 0.2, s = 100) 93.91 1.65 1.58 4.43
Scenario 4
(λ = 4, μ = 0.27, μ0 = 0.15, s = 28) 26.63 1.89 1.89 0.00
Scenario 5
(λ = 4, μ = 0.17, μ0 = 1, s = 28) 23.21 2.00 1.79 11.73

when 0 ≤ u∗ < s. When u∗ = s, the optimal policy is to
keep the threshold constant and equal to s.

In Table 4, we propose five representative scenarios with
constant arrival rates and compare the optimal through-
put with the one found with the ATP. Although the ATP
method is not optimal, the difference with the optimum
is quite small. This shows the advantage of ATP in the
case of constant arrival rates. Recall that our main pur-
pose in this article is the analysis of the case with a fluc-
tuating arrival rate. In the next section, we consider the
case of a fluctuating arrival rate and evaluate the perfor-
mance of ATP through a comparison with other intuitive
methods.

4. Non-constant arrival rates

In Section 4.1 we compare ATP with methods that use
constant step sizes. Then in Section 4.2 we analyze the
impact of the parameters on the choice of the method.
In Section 4.3 we propose some other intuitive adaptive
methods.

We consider cases where the length of the working day
equals 8 hours (D = 8 h) and a frequent possibility of re-
evaluating the real threshold c, at the beginning of each
time interval with length θ = 1, 5, or 15 minutes. We use
simulation to obtain the performance measures. For each
scenario, we run n replications. We then introduce a mea-
sure of the bias after the n simulations, denoted by rn and

calculated as rn =
∑n

k=1 Max(α−SLk,0)
n , where SLk is the ser-

vice level of simulation k (1 ≤ k ≤ n). Since the value of rn
should be as small as possible, we introduce a coefficient
A that would be the aversion of the call center manager
to the risk and introduce an utility indicator denoted by
Un and given by Tn − A× rn, where Tn is the expected
throughput after n simulations. The confidence intervals
are a safe way to evaluate the required number of equiva-
lent simulations, n. The confidence interval for a proportion

p and a risk of 5% is (p − 1.96
√

p(1−p)
n , p + 1.96

√
p(1−p)

n )
in which n is the number of terms used to calculate the pro-
portion p. If we want a precision of one decimal we need

2 × 1.96
√

0.8(1−0.8)
n < 0.001 then n >2 458 624. In order to

have safe results we run each simulation 3000 000 times.

4.1. Comparison with constant step methods

We propose different scenarios to compare ATP with con-
stant step size methods. We denote by h the step size
(0 < h ≤ 1). When we need to increase (respectively de-
crease) the real threshold ci after i intervals (1 ≤ i < N)
under the case SLi > α (respectively SLi < α) we add h to
ci (respectively we add −h to ci ). In each scenario we use
an aversion of risk equal to 100 and initialize the system
with c0 = u0 = s. In some scenarios the number of agents
varies over the day. When the number of agents decreases,
we could be in a situation in which c > s; i.e., the number
of busy agents becomes higher than the new value for s.
To avoid such a situation, we force in the simulation the
change of c to the new smaller value of s. Any undertaken
task by a removed agent is lost. In all scenarios the con-
straint on calls is such that the proportion of calls that wait
less than 30 seconds is at least 80%, τ = 30s and α =80%.
We consider the following scenarios:

� Scenario 1: λ = 4, μ = μ0 = 0.2, s = 28, and N = 480
(θ = 1 min);

� Scenario 2: λ = 4, μ = μ0 = 0.2, s = 28, and N = 32
(θ = 15 min);

� Scenario 3: λ = 4, μ = 0.27, μ0 = 0.15, s = 28, and N =
480;

� Scenario 4: λ = 4, μ = 0.17, μ0 = 1, s = 28, and N =
480;

� Scenario 5: λ linearly decreasing from 5 to 3, μ = μ0 =
0.2, s = 34 if λ > 4.5, s = 28 if 4.5 > λ > 3.5, s = 23 in
the remaining cases, and N = 480;

� Scenario 6: λ linearly increasing from 3 to 5, μ = μ0 =
0.2, s = 34 if λ > 4.5, s = 28 if 4.5 > λ > 3.5, s = 23 in
the remaining cases, and N = 480;

� Scenario 7: During the first quarter of the period λ is
linearly increasing from one to five, during the second
quarter λ is linearly decreasing from 5 to 3, during the
third quarter λ is linearly increasing from 3 to 5, and
during the last quarter λ is linearly decreasing from 5 to

D
ow

nl
oa

de
d 

by
 [

E
co

le
 C

en
tr

al
e 

Pa
ri

s]
 a

t 1
2:

36
 1

5 
M

ar
ch

 2
01

5 
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Table 5. Comparison between ATP and constant step methods

h T SL % r U h T SL % r U
Sc 1 0.1 1.17 80.6 0.0046 0.71 Sc 2 0.1 1.53 72.15 0.0782 −6.3

0.2 1.12 80.5 0.0036 0.77 0.2 1.38 78.7 0.0201 −0.63
0.5 1.04 80.1 0.0032 0.72 0.5 1.23 81.4 0.0063 0.60
1 0.98 80.0 0.0035 0.63 1 1.19 80.7 0.0062 0.57

ATP 1.09 80.7 0.0027 0.82 ATP 1.12 85.6 0.0008 1.04
Sc 3 0.1 1.85 80.3 0.0023 1.62 Sc 4 0.1 3.20 78.9 0.0314 0.06

0.2 1.80 80.3 0.0017 1.63 0.2 3.07 79.5 0.0277 0.30
0.5 1.68 80.3 0.0013 1.55 0.5 3.05 79.2 0.0278 0.27
1 1.57 80.2 0.0014 1.43 1 3.14 79.2 0.0281 0.33

ATP 1.72 81.0 0.0003 1.68 ATP 2.95 78.9 0.0264 0.31
Sc 5 0.1 1.19 79.9 0.0067 0.52 Sc 6 0.1 1.05 83.2 0.0014 0.91

0.2 1.13 80.1 0.0037 0.76 0.2 1.04 81.7 0.0021 0.83
0.5 1.08 80.0 0.0033 0.75 0.5 1.04 80.8 0.0025 0.79
1 1.01 79.9 0.0033 0.68 1 1.04 80.2 0.0032 0.72

ATP 1.12 80.4 0.0018 0.93 ATP 1.09 82.1 0.0007 1.02
Sc 7 0.1 1.38 81.6 0.0010 1.28 Sc 8 0.1 3.04 78.8 0.0246 0.59

0.2 1.37 81.2 0.0015 1.21 0.2 2.84 79.5 0.0201 0.83
0.5 1.27 80.4 0.0017 1.10 0.5 2.72 79.3 0.0178 0.94
1 1.24 80.3 0.0011 1.14 1 2.76 78.9 0.0188 0.88

ATP 1.38 81.2 0.0005 1.33 ATP 2.83 79.7 0.0172 1.11
Sc 9 0.1 1.41 81.6 0.0002 1.39 Sc 10 0.1 1.31 81.43 0.0028 1.03

0.2 1.41 81.5 0.0004 1.37 0.2 1.25 81.30 0.0021 1.04
0.5 1.38 81.5 0.0002 1.36 0.5 1.22 81.20 0.0019 1.03
1 1.36 81.6 0.0002 1.34 1 1.19 80.80 0.0016 1.03

ATP 1.37 82.4 0.0000 1.37 ATP 1.21 82.53 0.0010 1.11
Sc 11 0.1 0.61 80.5 0.0047 0.13 Sc 12 0.1 0.59 80.5 0.0047 0.12

0.2 0.56 80.5 0.0037 0.19 0.2 0.52 80.4 0.0038 0.14
0.5 0.52 80.2 0.0029 0.23 0.5 0.50 80.4 0.0031 0.19
1 0.48 80.0 0.0038 0.10 1 0.47 80.0 0.0039 0.08

ATP 0.54 80.8 0.0026 0.28 ATP 0.53 80.8 0.0026 0.27

1, μ = μ0 = 0.2, s = 34 if λ > 4.5, s = 28 if 4.5 > λ >

3.5, s = 23 in the remaining cases, and N = 480;
� Scenario 8: The period T is divided into 10 sub-periods

and the value of λ alternates between the values 5 and
0.5; i.e., it is 5 in the first sub-period, 0.5 in the second
one, again 5 in the third one, and so on, μ = μ0 = 0.2,
s = 28 and N = 480;

� Scenarios 9, 10, 11, and 12: For further practical evi-
dence, we relax the assumption of the exponential dis-
tribution for call and email service times. We instead
consider a log-normal distribution with expected service
rates of μ = μ0 = 0.2. Let us denote by cv the coeffi-
cient of variation of a given distribution. It is defined as
the ratio between its standard deviation and its expected
value. We vary the standard deviation in scenarios 9, 10,
11, and 12 in order to reach cv = 0, 0.5, 1.5, and 2, re-
spectively. In all scenarios, we choose λ = 4, s = 28, and
N = 480 (θ = 1 minute).

The results are shown in Table 5. We consider values of
h = 0.1, 0.2, 0.5, and 1. We observe that ATP performs
better or at least similar to the constant step methods with
an aversion of risk equal to 100.

In Figs. 4(a), 4(b), and 4(c), we present the evolution of
the threshold, the proportion of customers that wait less
than 30 seconds, and the email throughput as a function of
time in one simulation of scenario 2. This is an illustration
that could help to understand why ATP is efficient. With
a small value of h (h = 0.2), the initialization has an im-

portant impact on the evolution of the threshold. At the
beginning with u0 = c0 = s = 28, there is a need to decrease
the threshold. A small value of h does not allow us to do this
decrease quickly enough. Then there is a need to keep on
decreasing the threshold in order to have a chance to reach
the service level on calls over the whole day. On the other
hand, a high value of h (h = 1) goes with a fluctuation of
the threshold, with sometimes poor call service levels and
other times poor email throughput. Note that the higher is
h, the faster the service level converges its target. In what
follows we go further in analyzing the impact of the main
parameters on the choice of h.

4.2. Impact of the parameters

In this section, we analyze the impact of the parameters for
the choice of a constant value for h.

Impact of the number of intervals, N: The comparison be-
tween scenarios 1 and 2 in Table 5 indicates that there is
a link between h and N. In scenario 2 with only 32 inter-
vals, a small value of h does not allow one to reach the
call service level constraint. In scenario 1, a large number
of intervals and a high value for h lead to an important
fluctuation from u = 0 to s. An advantage of ATP is its
ability to adapt to the number of intervals. A high number
of intervals can lead to a high probability of reaching ex-
treme and inefficient states (u = 0 or s). Thanks to slowing
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428 Legros et al.

Fig. 4. Evolution of the threshold, the service level, and the throughput (scenario 2).

down the speed of the threshold reduction when c is small
and the slowing down of the threshold increasing when c is
high, this is unlikely to happen. ATP also provides a high
capacity for reaction to when the threshold is too low or
too high, which is important in the case of a small number
of intervals.

Impact of the aversion of risk A: The choice of the method
for adapting the threshold depends on the risk aversion
of the manager. In our simulations we considered that A =
100 and showed the efficiency of ATP. This value provides a
balance between the performance (T) and the risk (r ). If we
consider the extreme case of an infinite aversion to the risk
(A = ∞), the choice will be made for the smallest value of r .
We observe that the choice will still be for ATP rather than
the other methods even more than with A = 100. This is an
important advantage of ATP; it is a safe method (i.e., the
probability that the service level constraint is eached at the
end of the working period is high). Since the threshold c is
usually closer to s than to zero, due to of the concavity at the
service level we usually have a higher speed in decreasing the
threshold than in increasing it, which is safe and explains
the small values for r . On the other hand, if the manager
has no risk aversion (A = 0) then the choice will be made

for the highest average throughput (T). ATP is then not the
best one but it still provides results close to the best ones in
Table 5.

Impact of the Email service rate: Consider scenarios 3 and
4. We observe that ATP performs better when the emails are
served slower (scenario 3) than when they are served faster
(scenario 4) than the calls. When the emails are served faster
than the calls, the need to increase c is more important be-
cause an email does not occupy an agent for a long period
of time, but with our method this increase might be too
small. However, we notice that this case has less meaning
for our study since the problem of reserving agents is inter-
esting in the case of long service times for background jobs
(relatively to calls).

Impact of the service time variability: Consider scenarios
9 to 12. We observe as expected that the increase in the
variability in service times deteriorates the system perfor-
mance. For all policies, the utility decreases in cv (when
going from scenario 9 to scenario 12). We also observe
that the relative benefit of ATP compared with the con-
stant step methods increases in cv, which means that ATP
behaves better against variability than the other policies.
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Table 6. Comparison of the methods

h T SL % r U h T SL % r U
Sc 1 M1 1.01 79.9 0.0038 0.62 Sc 2 M1 1.25 80.45 0.0080 0.44

M2 0.99 79.9 0.0037 0.62 M2 1.13 81.2 0.0068 0.45
M3 1.45 72.6 0.0743 −5.98 M3 1.59 68.0 0.0639 −4.79

M4a 1.01 80.9 0.0041 0.59 M4a 1.24 80.7 0.0090 0.34
M4b 1.06 80.0 0.0029 0.76 M4b 1.20 80.2 0.0099 0.22
0.1 1.17 80.6 0.0046 0.71 0.1 1.53 72.15 0.0782 −6.3
0.2 1.12 80.5 0.0036 0.77 0.2 1.38 78.7 0.0201 −0.63
0.5 1.04 80.1 0.0032 0.72 0.5 1.23 81.4 0.0063 0.60
1 0.98 80.0 0.0035 0.63 1 1.19 80.7 0.0062 0.57

ATP 1.09 80.7 0.0027 0.82 ATP 1.12 85.6 0.0008 1.04

4.3. Comparison with other intuitive methods

In this section, we compare ATP with other intuitive
adaptive methods. We propose the following ones based
on the reevaluation of the step hi after each intervals i
(i = 1, . . . , N).

Method 1: The first intuitive idea is to propose a decision
based on the distance from the achieved service level and
the target after each interval. The intuition is that the need
to change the threshold increases with this distance. We
initialize with h0 = 0, c0 = u0 = s, and SL0 = 100%. For
i ∈ {0, . . . , N − 1}, we obtain hi according to

hi+1 = |SLi − α|.

Method 2: Method 2 is a variation of Method 1. We pro-
pose a decision based on the cumulative distance with the
service level target, α. The intuition is that the need to
change the threshold not only increases with the distance
to the target service level but also increases with the time
spent above or under this target. More precisely, we initial-
ize by h0 = 0, c0 = u0 = s, and SL−1 = SL0 = 100%. For
i ∈ {0, . . . , N − 1}, we obtain hi according to

hi+1 = Min {1, hi + |SLi − α|} × 1(SLi −α)(SLi−1−α)>0.

Method 3: We propose the same evaluation of hi as in
Method 2 but instead of using the service level SLi of
the last i intervals (i = 1, · · · , N), we use the service level
measured only on the last interval i (i = 1, · · · , N). This
method is made to correct a too important weight that
could be given to the past in the previous method.

Methods 4a and 4b: Methods 4a and 4b are not really in-
tuitive. The idea behind them is the question of when the
strongest decisions in the change of the threshold should
be taken. If we choose the strongest changes in the thresh-
old at the beginning of the period we could quickly reach
the service level constraint (Method 4a). If we choose the
strongest changes at the end of the period we could maxi-
mize the email throughput at the beginning and do an effi-
cient correction at the end of the working period to reach
the service level constraint (Method 4b). More precisely, in

Method 4a we propose after i intervals to choose

hi = 1 − i
N

,

and in Method 4b we choose

hi = i
N

,

for i = 1, · · · , N.

We compare the proposed methods in Table 6 with the
constant step size methods and ATP under scenarios 1 and
2. We observe that those methods are not as good as ATP
and even sometimes not as good as the constant step size
methods. Methods 4a and 4b are not efficient for a sim-
ple reason; the choices in changing the threshold mainly
depend on the demand and not on the closeness to the
end of the working day. We observe on other simulations
that Method 4a is efficient when the variability in the de-
mand is high at the beginning of the working period and
the opposite is true for Method 4b. Although Methods 1
and 2 are the most intuitive, we observe that they are not
efficient. The weight of the past is too heavy and entails ex-
treme choices in the threshold (which are often inefficient)
to compensate the past values. Method 3 is often more
efficient in terms of the email throughput; however, it con-
verges very slowly. We observe on other simulations that
Method 3 could be a good proposition only if a working
day is long enough (at least 1000 hours). An intermediate
solution between Methods 2 and 3 would be to propose a
decision in the changes of the threshold based on the av-
erage of the service levels measured on all past intervals
weighted by coefficients that, are increasing with proxim-
ity to the last interval. Many solutions can be proposed in
that direction but none of them seems to be efficient for a
representative number of scenarios.

5. Conclusions and future research

We considered call centers with inbound calls and an in-
finite supply of emails. We proposed a scheduling policy,
refered to as ATP, where the objective is to do as many
emails as possible while satisfying a service-level constraint
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on the call waiting time. In the real-life call center con-
text with a fluctuating call arrival rate, the assignment pol-
icy for emails adapts itself to the current service level. We
showed the efficiency of ATP by comparing its performance
with that of other policies. One of the main advantages
of ATP is its ability to quickly react when an important
change in the arrival process happens and also its abil-
ity to avoid inefficient states when the arrival rate remains
constant.

Future research on this subject may follow two direc-
tions. First, a theoretical modeling for the adaptive blend-
ing might be useful to better understand ATP. This is now
hindered by the fact that no theory seems to exist on this
type of control problems. One of the difficulties in building
a Markov chain is the non-exponentiality of the decision
interval length defined in the ACD. Another difficulty is
the lack of transient results for the performance measures
of call center queueing models. Second, the complexity of
a real-life call center has been partly avoided in our study.
Features such as abandonments, retrials, different types of
inbound calls, switching times between different tasks, and
a finite number of back office tasks are important, but in-
cluding them would considerably complicate the analysis.
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