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Abstract

In an observable queue, customers joining decisions may be influenced by wait-aversion and crowd-attraction.

These opposing phenomena and the diversity of arriving customers lead to an arrival process that depends

on the number of present customers. For the system manager, having more customers may be beneficial as

it can increase future arrivals due to the attraction generated. It may also saturate the system, resulting

in long waits. Rejection at arrival may then be employed as a way to obtain a trade-off between these

conflicting objectives. With this in mind, we developed a Markov decision process approach to determine

how to optimally reject customers in a queueing system with state-dependent arrivals.

When the arrival rate is bounded, we compute the optimal policy from a value iteration approach. When

the arrival rate is decreasing and convex, we prove that it has a threshold form. When the arrival rate is

increasing and potentially unbounded, uniformization may not apply. In dealing with this case, we restrict

the analysis to stationary policies and prove the optimality of threshold policies from a computational

approach. In addition, we show how to compute the optimal threshold within a finite number of iterations

and prove that the long-run expected cost is decreasing and convex in the number of servers. We finally

illustrate the applicability of our results through the analysis of a linearly increasing arrival rate, determining

the main drivers of control decisions.
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1 Introduction

Understanding customer behavior is an important step in modelling a queueing system. In particular, the

perception of congestion influences a customer’s decision on whether to join a system. When the service

is unknown, congestion may be seen as an indication of quality. The empty restaurant syndrome is the

most famous example. A restaurant with mostly empty tables gives the idea of low quality. The underlying

psychology of empty restaurant syndrome is simple: if so few people come to this restaurant, it cannot be

good. The dynamic is based on uninformed consumers taking their cues from informed ones. This behavior

of congestion-attraction is also called herding behavior. It can be partially explained by the rational lack of

knowledge about the quality of a service, but it may also be driven by some aspects of human psychology.

Academic research has focused on understanding herding behavior. One major domain of application

of this behavior is Finance (Bacry et al., 2013; Da Fonseca and Zaatour, 2014; Rambaldi et al., 2017). In



such studies, crowd-attraction is used to capture the contagious nature of financial activity. Hawkes (1971)

developed a stochastic process to capture the effect of past events on present arrivals. From an operations

management orientated perspective, Debo and Veeraraghavan (2009) provides an overview of crowd-attraction

models, in which the idea of unknown service is prevalent. For instance, Veeraraghavan and Debo (2011)

study customers’ joining decisions when there are two competing congested services of unknown service quality.

Debo and Veeraraghavan (2014) evaluate the equilibrium joining decision when the queue length is positively

correlated with unknown service quality. The focus of the aforementioned studies, as well as that of empirical

studies (e.g., see Simonsohn and Ariely (2008)), is to capture the drivers of customers’ herding behavior.

Another and better known aspect of human psychology is the wait-aversion. A congested system leading

to long waits discourages customers from joining. This negative perception of the congestion is an underlying

assumption in most queueing studies where optimization is involved. When considering customers acting

rationally, congestion is also viewed as reducing the attractiveness of a system. For instance, from queueing

games approach, depending on whether the queue is observable of not, customers may adopt a threshold or a

randomized joining policy to maximize their utility (Hassin and Haviv, 2003). Empirical studies confirm the

phenomenon of wait-aversion, although agreeing that it may not be well captured by rational models (Bennett,

1998; Kumar and Krishnamurthy, 2008; Buell, 2020).

Motivated by the phenomena of crowd-attraction and wait-aversion, we consider a queueing model with

a state-dependent arrival rate. Instead of focusing on the drivers of state-dependency, we investigate how a

controller may regulate the customer flow by rejecting or proposing a service alternative to some customers.

The need to exercise admission control is particularly relevant when congestion attracts more arrivals, as the

uncontrolled growth of population in the system may lead to poor service quality. While the admission control

problem has been widely studied in the literature, most of these studies assume that the customers’ arrival

rate is constant (Koçağa and Ward, 2010; Schrieck et al., 2014; Legros, 2020). The aim of this paper, is to

determine optimal rejection decisions at arrival in the presence of state-dependent arrival rates.

First, we consider the case of a bounded arrival rate. We employ an iterative Markov decision process

approach to compute the optimal policy. Our numerical experiments show the optimality of a single-threshold

policy. When the arrival rate is decreasing and convex, we prove the convexity of the value function. This also

proves the optimality of a threshold policy. This result is extended to the case of an increasing and potentially

unbounded arrival rate. In this case uniformization may not apply and an alternative computational approach

based on an n−terminating formulation is developed. An algorithm to compute the optimal threshold level

is proposed. In addition, we prove that the long-run expected cost is decreasing and convex in the number of

servers. These results indicate that the system capacity can be viewed as a decision variable by the system
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manager since the question of dimensioning the system is equivalent to computing the optimal policy. Finally,

we illustrate our results by considering a case where the arrival rate is linearly increasing. This model may

correspond to a situation with informed and uninformed customers. The arrival process of informed customers

is Poisson while the arrival process of uninformed customers is generated by the presence of customers in the

system. This simple queueing model may capture some of the aspects of herding. For this queue, our numerical

investigations show that fewer mistakes are made when dimensioning a crowded system, having systems that

are too large may be detrimental to both rejection and congestion, and that crowd-attraction may only have

a significant effect in low workload situations.

Structure of the paper. The rest of the paper is organized as follows. Section 2 presents a literature review.

Section 3 defines the model and the optimization problem. Section 4 investigates the case of a bounded arrival

rate. Section 5 develops an algorithmic approach for the computation of the system capacity in the increasing

case. Finally, Section 6 concludes the paper and highlights avenues for future research. The proofs are given

in the appendix at the end of the paper.

2 Literature review

The focus of our paper is on admission control in queueing systems. Admission control corresponds to short-

term decisions as compared to system parameters’ optimization considered for determining the system design

(Stidham, 2009). Specifically, for a given optimization problem where a trade-off between the system congestion

and the rejection flow has to be established, a controller has to decide whether or not to accept a customer in

the system. This issue has been extensively addressed in various ways by many authors (Ku and Jordan, 2003;

Maglaras and Van Mieghem, 2005; Ward and Kumar, 2008; Xu, 2015; Niyirora and Zhuang, 2017; Bountali and

Economou, 2017). In what follows, we present the literature related to this paper. First, we detail admission

problems in single queues and explain the methodological tools that are employed in this paper. Second,

we present admission problems in queueing networks. Next, we show applications of the admission control

in service facilities. Finally, we provide references in relation with queueing games as a way to explain the

state-dependency of the arrival rate.

Methodological approach for single queues. Stidham and Weber (1989) developed a method to prove

monotonicity results for arrival rate control. Their method inspired our present approach, although they

did not directly consider the case of admission control. Koole (2007) presented an event-based dynamic

programming framework to prove monotonicity properties in queueing control problems as considered in this
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paper. Adopting this approach, they proved that the optimal admission control policy is of a threshold type

when the arrival rate is constant. We extend their result in Section 4, using the same approach when the

arrival rate is decreasing and convex in the number of customers in the system. This method however relies

on uniformization and fails to provide the desired result when the arrival rate is unbounded as in Section 5 of

this paper. Studies by Koçağa and Ward (2010) and Adusumilli and Hasenbein (2010) considered the problem

of admission and rate control. They developed the so-called n−terminating problem to compute the optimal

threshold for their respective models. The method is used in this paper to compute the optimal rejection

threshold and prove the threshold form of the optimal policy while restricting the analysis to stationary

policies in Section 5. Extensions of the result can be found with general interarrival times for a loss system

(Örmeci and van der Wal, 2006), batch arrivals (Örmeci and Burnetas, 2005; Yildirim and Hasenbein, 2010),

and state-dependent service rates (Xia et al., 2017), but to the best of our knowledge, the result has not yet

been extended to the case with state-dependent arrival rates.

Admission control in queueing networks. Admission control has been investigated for complex queueing

networks. With a dynamic programming approach close to ours, Hordijk and Koole (1991) investigated routing

to parallel queues in which each queue has its own single server. They provided conditions on the cost function

such that the optimal policy assigns customers to a faster queue when that server has a shorter queue. Ku

and Jordan (2002) considered admission control in a multi-server loss queue fed by a set of upstream parallel

multi-server loss queues and by an arrival of new customers. They proved that the policy that maximizes total

discounted revenue is a multi-threshold policy. Chang and Chen (2003) considered a two-stage loss tandem

queueing system and showed the value of admission control to ensure that customers will go through the second

stage successfully. Ziedins (2007) considered a network of parallel finite tandem queues with two stages with

loss customers. Surprisingly, the authors showed that as the service rate increases at the second stage, the

optimal policy changes in such a way that the total expected cost due to loss increases. Also with two stages

of service, Silva et al. (2013) showed that the optimal control policy has a threshold form. Their conjecture is

proven in Kim and Kim (2014).

Admission control for service systems. Admission control is often implemented in service systems like

hospitals or call centers. For instance, in a queueing network of service facilities, Cosyn and Sigman (2004)

investigated the admission control issue with waiting and reneging from a revenue perspective. Using orbiting

as an approximation of queueing, they showed that a particular tracking policy is close to be optimal. Lin and

Ross (2004) analyzed a single server loss queueing system where a gatekeeper has to decide whether to admit a

customer without knowing the status (idle or busy) of the server. They showed that a threshold policy which

4



rejects arrivals for a certain time interval after each admission and next accepts the next customer is optimal.

Bassamboo et al. (2005) considered a multi-class service system with several server pools and doubly stochastic

arrivals. A double control is exercised: rejection control at arrival and routing control to a given team after

a certain wait. Under asymptotic assumptions on the system parameters, they showed how to implement the

fluid model’s optimal control in the original service system context. In the context of outsourcing, Gans and

Zhou (2007) studied a call center with high and low values calls and evaluated routing schemes for outsourcing

part of the low values calls, investing different priority queues. Gurvich and Perry (2012) considered a service

network operated under a threshold-type overflow mechanism. If the waiting room is full, the call is overflowed

to an outsourcer. Also in an outsourcing context, Legros et al. (2020) proved that rejecting customers after

letting them experiment some wait leads to an improvement in the service quality for served customers as

compared to rejection at arrival.

Queues with state-dependent arrival rates. The dynamic control of queues with state-dependent arrivals

is complicated due to the break of monotonicity properties that this phenomenon can induce, queues with

state-dependent parameters have been widely analyzed for performance analysis purposes (e.g., see Boxma

et al. (2005); Bekker et al. (2011); Legros (2018)). Queueing games provide a methodological framework

to determine how the arrival rates may evolve as functions of the system state. There is a large body of

literature on this topic, including Gavirneni and Kulkarni (2016); Dimitrakopoulos and Burnetas (2016); Cui

and Veeraraghavan (2016); Hassin and Roet-Green (2017). This literature stream focuses on the impact of

customers acting rationally (i.e., deciding whether to join or to balk) when trying to obtain the best trade-off

between the value of a service and the cost of waiting. The books of Hassin and Haviv (2003) and Hassin

(2016) explain the main principles of decision making from the customers’ perspective. In this paper, we

consider the state-dependent arrival rate as exogenously determined and turn our focus on external control.

3 Model description

Below, we provide the model description and the routing problem. Our assumptions are partly driven by the

actual problem that motivates the analysis, and partly by our concern to keep the model as simple as possible.

The idea is to obtain an easy-to-implement dimensioning procedure, and to gain insights into the effect of

crowd-attraction.

The queueing model. We consider a system with infinite capacity with a single pool of s homogeneous

agents. Customers arrive at the system according to a Poisson process with state-dependent arrival rate λ(x),
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where x is the number of customers present in the system. If a customer is not routed to service immediately

upon arrival, then she/he waits in a queue for her/his turn to be served, with customers being served in order

of arrival. The service times of all customers are assumed to be exponential random variables with rate 1. As

such, our queueing model is called an Mx/M/s queue, under Kendall’s notation.

State-dependent arrival rates as an effect of crowd-attraction and wait-aversion. Here, we discuss

how state-dependent arrivals can result from the diversity of rational customers with regard to their perception

of the wait and quality of service. Assume that we haveM+1 classes of customers and that the arrival process

of class-i customers is Poisson with parameter λi, for i = 0, 1, 2, · · · ,M . On arrival, customers observe the

system state and decide whether to join the system or not. This decision is based on a trade-off between the

wait and the service quality. Due to the first-come-first-served discipline, the expected wait at arrival when x

customers are in the system is E(Wx) = max(x−s+1,0)
s . However, each customer class has a different sensitivity

to the wait. We denote by Ci, the wait sensitivity of class-i customers, for i = 0, 1, 2, · · · ,M . The particularity

of this queue is the congestion-attraction feature. As customers lack information regarding the real quality of

service, they tend to associate the number of customers present in the system with the service quality. Yet, this

perception differs per customer class. Class-i customers consider that the benefit of the service is Bi,x, when x

customers are in the system. We assume that Bi,x is increasing in x, in order to capture the crowd-attraction

feature. Note that we may have Bi,x < 0 when the price of the service is higher than the estimated reward for

being served.

The joining decision for class-i customers depends on the difference Bi,x − CiE(Wx). This difference

represents the utility for joining the system. Given that the utility of balking is zero, a class-i customer joins

the system in state x if Bi,x − CiE(Wx) ≥ 0, for x ≥ 0. A joining function, φi(x), can be defined for class-i

customers such that φi(x) = 1 when customers join at state x, and φi(x) = 0 otherwise, for i = 0, 1, 2, · · · ,M .

The overall arrival rate at state x, λ(x), can then be written as λ(x) =
M∑
i=0
φi(x)λi, for x ≥ 0. We further

assume that customers do not regret their choice after joining. This means that customers cannot abandon

the system. This assumption is mainly made for tractability reason. Note that when the revenue for being

served is fixed and known by customers, rational customers should not abandon as their wait can only reduce

over time if the first-come-first-served discipline is applied (Hassin and Haviv, 2003).

Depending on the function Bi,x, different profiles of customer can be encountered. Figure 1 illustrates

four of them. The four profiles in this figure are determined by the evaluation of the service quality when the

system is empty and by the convexity property of Bi,x. Figure 1(a) illustrates a case where Bi,x is concave

with Bi,0 > 0. This results in classical threshold behavior similar to that encountered with informed customers
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(d) Pessimist convex

Figure 1: Customer profiles

as in Hassin and Haviv (2003). Customers join the system only if the number of customers present is below a

certain level. In this case, the wait-aversion is dominant compared to the crowd-attraction. This phenomenon

is commonly observed in amusement parks, where customers join an activity if the wait is below a certain

threshold level. For the pessimist (Bi,0 < 0) concave profile of Figure 1(b), customers join within a certain

interval. As the number of customers increases, the attraction of the system also increases if there is no

wait. The attraction decreases with the number of customers present when the system is congested. This

phenomenon is observed in restaurants where a sufficient number of customers should be present to attest

that the service quality is good. Yet, a too crowded restaurant indicates that the wait will be too long which

deters from entering. With optimist and convex customers, either customers always join as presented in Figure

1(c), or they always join except within a certain interval. The former case corresponds to situations where

the crowd-attraction is stronger than the wait-aversion or when customers are not sensitive to the wait. This

may happen in situations where customers do not actively wait, for instance in call centers where customers

ask to be called. The latter case is less likely to happen in real systems. Pessimist and convex customers join

only above a certain threshold as shown in Figure 1(d). This phenomenon can be observed in order books on

financial markets when a threshold in the number of sent orders can be perceived as accrediting a preference

for a price. Several other customer profiles may exist involving a more complex function Bi,x. This results in
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a state-dependent arrival rate, λ(x), capturing customers rational decisions.

Optimization problem. To ensure a sufficiently low waiting time and limit system congestion, the system

manager should not accept all arriving customers. Therefore, customers’ rejection at arrival is permitted. We

consider a cost model where a cost of cR > 0 is counted per rejected customer, and each customer in the

system costs cN per time unit. This cost model allows us to account for the conflicting objectives of customer

rejection and system congestion. Our aim is to determine optimal rejection control to minimize the long-run

system cost per customer.

Our aim is to determine the optimal rejection policy in the case with state-dependent arrival rates. The

difficulty lies in the potential irregular behavior of λ(x) which may break the monotonicity properties of

the performance measures and subsequently preclude proving the optimal policy form. We put forward the

following approach to tackle the problem:

• In Section 4, we develop an iterative Markov decision process approach to derive the optimal policy.

This method can be employed for any bounded function λ(x). In the case where λ(x) is decreasing and

convex in x, we prove that the optimal policy is of the threshold type.

• In Section 5, we restrict the analysis to stationary policies. In the case where λ(x) is increasing in x, we

show that the optimal policy is of the threshold type and we propose an algorithm to derive the optimal

threshold after a finite number of iterations.

4 Admission control with bounded arrival rates

In this section, we tackle the admission control problem by employing an iterative one-dimensional Markov

decision process approach when the arrival rate is bounded. Having a bounded arrival rate allows us to employ

the uniformization technique in order to obtain a discrete time Markov chain. In Section 4.1, we formulate the

system value function and derive the optimal policy numerically. We show that optimal policies are equivalent

to threshold type policies. Next in Section 4.2, we prove the threshold form of the optimal policy in the

decreasing and convex case for λ(x).

4.1 Computation of the optimal policy

We first formulate the system value function. The two possible transitions of the Markov chain are as follows:

1. Arrival at the queue with rate λ(x). The number of customers is increased by 1, which changes the state

to x+ 1, for x ≥ 0.

8



2. Service completion with rate min(x, s). The number of customers is reduced by 1, which changes the

state to x− 1, for x > 0.

Therefore, the Markov chain under consideration is a specific birth and death process with birth rate λ(x) and

death rate min(x, s).

Given that the arrival rate is bounded, there exists λ > 0 such that λ = sup
x≥0

λ(x). Consequently, the event

rate is bounded by λ+ s and our system is uniformizable. By replacing the rates λ(x) and min(x, s) by λ(x)

λ+s

and min(x,s)

λ+s
, we obtain the transition probabilities in the equivalent discrete time Markov chain. Thus, we

define the value function, Vk(x), over k steps as follows, with V0(x) = 0, and

Vk+1(x) = cNx+
λ(x)

λ+ s
min(cR + Vk(x), Vk(x+ 1)) +

min(x, s)

λ+ s
Vk(x− 1) +

(
1− λ(x)

λ+ s
− min(x, s)

λ+ s

)
Vk(x),

(1)

for x ≥ 0. Note that for x = 0, we have min(x, s) = 0, which means that there is no transition from x = 0 to

x = −1 and Vk(−1) does not need to be specified.

We obtain the long-run average optimal actions by applying the value iteration technique introduced by

Bellman (1957) and Howard (1960), by recursively evaluating Vk using Equation (1), for k ≥ 0. As k tends

to infinity, the optimal policy converges to the unique average optimal policy and the difference Vk+1 − Vk

converges to expected average long-run costs (see Puterman (1994), Section 8.1 and Koole (2007), Section 4.1).

Moreover, the optimal long-run policy is independent of the choice of V0.

Numerical illustration. For computational reason, we need to define an upper bound for the state space,

M , such that 0 ≤ x ≤M . At state x = M , Equation (1) is modified in

Vk+1(M) = cNM +
λ(M)

λ+ s
(cR + Vk(M)) +

min(M, s)

λ+ s
Vk(M − 1) +

(
1− λ(M)

λ+ s
− min(M, s)

λ+ s

)
Vk(M).

In what follows, we present examples of computed policies with cR = 1, cN = 0.3, s = 3 and where λ(x)

has a periodic form with λ(3x) = λ0, λ(3x+ 1) = λ1, and λ(3x+ 2) = λ2, for x ≥ 0. The first three columns

of the table indicate the values of the arrival rates. The next 11 columns provide information regarding the

optimal action at states x = 0, 1, · · · , 10. We use the letter A (respectively, the letter R) when it is optimal to

accept (respectively, to reject) an arriving customer. In the presented examples, it is optimal to reject arriving

customers for x ≥ 10. The 15th column recalls the first state at which it is optimal to reject arriving customers.

The last column gives the long-run expected cost under the optimal policy.

For the first two lines, with constant arrival rates, we obtain a classical threshold policy. For this policy, it
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Table 1: Computation of the optimal policy (cR = 1, cN = 0.3, s = 3, λ(3x) = λ0, λ(3x + 1) = λ1, and
λ(3x+ 2) = λ2, for x ≥ 0)

Arrival rates States Threshold Expected cost
λ0 λ1 λ2 0 1 2 3 4 5 6 7 8 9 10
1 1 1 A A A A A A A R R R R 7 0.3135
2 2 2 A A A A A R R R R R R 5 0.7858
0.1 1.5 0.1 A A A A R A R R R R R 4 0.0669
1 2 3 A A A A A R R A R R R 5 0.6909
0.1 2 5 R R A A R R R A R R R 0 0.1000
0.01 0.1 5 A R A A A R A A A R R 1 0.0040

is optimal to accept all arriving customers if and only the number of customers present in the system is below

a certain threshold level. On the contrary, in the last four lines with non-constant arrival rates, we observe

multiple switches between the “accept” and “reject” actions. This indicates that the optimal policy is defined

by multiple thresholds. However, these complex policies result in the same single-threshold policy as in the

case with a constant arrival rate. The reason is that the first rejection threshold has the role of the unique

threshold since the system cannot have more customers than this first threshold level. As expected, we observe

that the rejection threshold decreases with the arrival rates. Similarly, the threshold should increase with the

number of servers. The effect of the number of servers is investigated in Section 5.

In conclusion, we observe from our numerical experiments that the optimal policy for our optimization

problem always results in a deterministic single threshold policy. However, this result is not possible to prove

in general due to the multiple switches observed between the “accept” and “reject” actions. We overcome this

difficulty in the next section by considering the case where the arrival rate is decreasing and convex.

4.2 Analysis of the decreasing and convex case

We now assume that the arrival rate is decreasing and convex. In this case, we have λ = λ(0). We prove

in this section that the optimal policy is a single threshold policy. A single threshold policy is characterized

by the fact that if rejection is optimal in state x, then rejection is also optimal in state x + 1. A sufficient

condition for this is: if Vk(x) + cR ≤ Vk(x + 1) then Vk(x + 1) + cR ≤ Vk(x + 2). This implication may

happen if Vk(x + 2) − Vk(x + 1) − cR ≥ Vk(x + 1) − Vk(x) − cR, which is equivalent to the convexity of Vk:

Vk(x+ 2) +Vk(x) ≥ 2Vk(x+ 1), for x ≥ 0. Therefore, by showing the convexity of the value function, we prove

the optimality of a single threshold policy. This convexity property is proven in Theorem 1 by induction on k.

The proof consists of showing the induction step for every component of the value function. In addition to the

convexity property, we need to prove that Vk(x) is increasing in x. The induction step requires the decreasing

and convex property of λ(x).

Theorem 1. If λ(x) is decreasing and convex in x, then the optimal policy for the admission control problem

is of threshold type.

10



The result of Theorem 1 indicates that the optimal policy can be defined by a threshold, n, such that

customers are allowed to join only if x < n. This threshold is the system capacity. Therefore, the optimization

problem can be interpreted as dimensioning the system.

For computational purposes, we need to set the value of the upper bound M sufficiently high. If the

optimal threshold, n, is such that n < M , then the switch from “accept” to “reject” will be observed. However

if n ≥M , then in all states x < M the optimal action is to accept an arriving customer. This does not allow

us to conclude on the value of the optimal threshold. We may then increase M by one and check whether the

switch from “accept” to “reject” can be observed. If the optimal threshold is finite, then after a finite number

of iterations, the optimal threshold can be found. Yet, the optimal threshold could be infinite. In this case,

this procedure will not enable us to determine the optimal policy after a finite number of iterations. We do not

have a sharp condition to determine if the optimal threshold is infinite. However, to remove some particular

cases from the analysis, in Proposition 1 we provide a necessary condition for the optimal threshold to be

infinite.

Proposition 1. If cR
λ(x)−λ(x+1)+min(x+1,s)−min(x,s)

λ(0)+s ≥ cN for x ≥ 0, then it is optimal to accept all arriving

customers (i.e., the optimal threshold is infinite).

In the following section, we restrict the analysis to stationary policies. In this set of policies, we prove that

deterministic policies are optimal, and we show how the optimal capacity can be computed.

5 Analysis of the increasing case

In this section, we consider the case where λ(x) is increasing in x and not necessarily bounded. Since the state

space is countably infinite, this may result in an unbounded birth rate. Therefore, contrary to the assumption

in Section 4, uniformization does not apply here. This means that the value iteration technique used in Section

4 in the equivalent discrete time Markov chain cannot be employed (Koole, 2007).

Instead, in Section 5.1, we develop an algorithmic approach to obtain the optimal policy within the set of

stationary policies. First, we prove that a threshold policy is optimal within the stationary policy set. Next,

we develop an algorithm to compute the optimal threshold level. In Section 5.2, we show the applicability of

our results in the particular case of a linearly increasing arrival rate.
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5.1 Computation of the optimal threshold

The optimality equation for the relative value function V (x) for the system, and average constant cost g is

V (x) =
cNx− g

λ(x) + min(x, s)
+

λ(x)

λ(x) + min(x, s)
min (V (x+ 1), V (x) + cR) +

min(x, s)

λ(x) + min(x, s)
V (x− 1), (2)

for x ≥ 0. We define ∆(x) = V (x)− V (x− 1), for x > 0. Therefore, Equation (2) can be rewritten as

cNx− g = min(x, s)∆(x)− λ(x) min(∆(x+ 1), cR), (3)

for x > 0, and

g = λ(0) min(∆(1), cR), (4)

for x = 0. Note that although the state space and the total event rate are unbounded, due to the minimizing

operator, the system’s stability is ensured and the approach in Puterman (1994), chapter 11, can apply to

obtain Equation (2).

In Theorem 2, we confirm the validity of the optimality equations for bounded solutions of Equations (3)-

(4). This theorem is also called a verification theorem. Let us denote the set of stationary stable policies by

ΩS . A policy πS ∈ ΩS is defined by the probabilities {p(0), p(1), · · · , p(x), · · · }, where p(x) is the probability

of accepting an arriving customer in state x. Let us denote by qx the stationary probability of being in state

x under policy πS , for x ≥ 0. The probabilities qx are solutions of

λ(x)p(x)qx = min(s, x+ 1)qx+1, (5)

for x ≥ 0. We denote the expected cost associated with a policy πS by gS .

Theorem 2. Verification Theorem. Suppose we have g <∞ and a bounded sequence (∆(1), ∆(2),...,∆(x),...)

satisfying Equations (3)-(4). If gS is the average cost associated with a policy in ΩS, we then have gS ≥ g.

The consequence of Theorem 2 is that a solution to Equations (3) and (4) exists and is unique. Although

we cannot affirm that this policy is stationary, we propose restricting the analysis to this set of policies. In

what follows, we prove that the optimal policy within the set of stationary policies is a threshold policy. In

addition, we prove that the optimal threshold level can be computed after a finite number of iterations. To

this end, we introduce the n−terminating problem approach as in Koçağa and Ward (2010) and Adusumilli

and Hasenbein (2010). The objective is to determine a constant gn and a vector (∆n(1),∆n(2), · · · ,∆n(n+1))
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such that

gn = λ(0)∆n(1), (6)

and,

cNx− gn = min(x, s)∆n(x)− λ(x)∆n(x+ 1), (7)

for 0 < x ≤ n, with ∆n(n + 1) = cR. The cost gn is the average cost associated with a threshold policy at

level n. Equations (6) and (7) define a Markovian Reward Process with finite state space. For such processes,

the existence of a unique solution is proven in Puterman (1994) (see Proposition 8.2.1).

In what follows, we prove in Theorem 3 that the optimal policy within the set of stationary policies is

of the threshold type and that the first local minimum obtained by solving Equations (6)-(7) is the optimal

threshold level. For this purpose, we prove an inequality in Lemma 1 relating the cost gn and the relative

difference ∆n(x). Next, in Lemma 2, we prove that ∆n(x) ≥ 0, for 1 ≤ x ≤ n+ 1.

Lemma 1. If gn1 ≥ gn2, for n1, n2 ∈ N, then ∆n1(x) ≥ ∆n2(x), for x ∈ {1, 2, · · · ,min(n1, n2) + 1}.

Lemma 2. We have ∆n(x) ≥ 0, for 1 ≤ x ≤ n+ 1.

Theorem 3. Assume that λ(x) is increasing in x. Suppose there is a sequence of solutions to the n−terminating

problem (6) and (7) such that gm < gk, for k ∈ {0, 1, 2, · · · ,m − 1} and gm+1 ≥ gm. Then if gS is the cost

associated with a policy in ΩS, we have gS ≥ gm.

From Theorem 3, whenever a local minimum of gn is found, this minimum is the optimal capacity. To

reduce the set of possible threshold levels, in Proposition 2 we provide conditions under which either all

customers should be rejected or the rejection threshold should be higher than or equal to s.

Proposition 2. Special cases: If cN < (1 + λ(m)− λ(m+ 1))cR, for 0 ≤ m ≤ s, then g0 > g1 > · · · > gs. If

cN ≥ (1 + λ(m)− λ(m+ 1))cR for m ≥ 0, then g0 < g1 < · · · < gs < gs+1 < · · · < gn < · · · .

We now provide the algorithm to compute the optimal system capacity, n. To facilitate the computation,

we specify the system cost, gn, obtained from a standard Markov chain analysis, and ∆n(n), obtained from
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Equation (7). So

gn = cRλ(n)

n−1∏
i=0

λ(i)
min(i+1,s)

n∑
x=0

x−1∏
i=0

λ(i)
min(i+1,s)

+ cN

n∑
x=0

x ·
x−1∏
i=0

λ(i)
min(i+1,s)

n∑
x=0

x−1∏
i=0

λ(i)
min(i+1,s)

, and, (8)

∆n(n) =
cNn− gn + λ(n)cR

min(n, s)
. (9)

The algorithm is as follows:

Algorithm 1: Computation of the optimal rejection threshold.

1. Initialisation. If cN ≥ (1 + λ(m) − λ(m + 1))cR for m ≥ 0, then n = 0 is optimal. If cN < (1 + λ(m) −

λ(m+ 1))cR, for 0 ≤ m ≤ s, then set n = s. Otherwise, set n = 0. Compute gn Equations (8) and (9).

2. Iteration step: Increase n by one and compute gn using Equations (8) and (9).

If gn > gn−1, then the rejection threshold n− 1 is optimal.

If gn ≤ gn−1, then go back to the iteration step.

We do not know if Algorithm 1 will stop. It could be that the optimal capacity is infinite. Unfortunately,

as in Section 4, we cannot obtain a condition which determines if the threshold is infinite. From Theorem 3,

the condition to have an infinite optimal capacity is to have gn decreasing in n. In this case, since we also

have gn ≥ 0, we may define the limit of gn as lim
n−→∞

gn = g. In Proposition 3, we provide an inequality which

could be used as a stopping criterion for Algorithm 1.

Proposition 3. Stopping criterion: If gn is decreasing in n, then lim
n−→∞

gn = g and gn−g ≤ λ(n)(cR−∆n(n)).

Note however that this proposition does not provide a necessary and sufficient condition for having an

infinite optimal threshold.

Impact of the number of servers. We end this section by determining the effect of the number of servers

on the expected cost for a given rejection threshold, n. Using Equations (6) and (7), we prove in Proposition

4 that the system expected cost, gn, is strictly decreasing and convex in the number of servers.

Proposition 4. For a system with a given rejection threshold, n, the expected cost, gn, is strictly decreasing

and convex in s.

5.2 Applicability of the results for a linearly increasing arrival rate

In this section, we show the applicability of our results to the case λ(x) = λ+xγ. From a modeling perspective,

this queueing model can be viewed as an off-shoot of Hawkes processes. Hawkes (1971) introduced the idea of
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self-excitement, a model in which the current intensity of events is determined by events in the past. The rate

of new event occurrences increases as each event occurs. This concept has been extended to queueing systems

via the definition of the Queue-Hawkes process in Daw and Pender (2020). As such, our model with a linearly

increasing arrival rate is an affine Queue-Hawkes Process as studied in Section 3 of Daw and Pender (2020).

First, we provide here the stationary performance measures of this queue for a given rejection threshold, n.

The expected number of customers in the system, E(N), and the expected rate of rejected customers, E(R),

are derived from the stationary probabilities. We denote by qx the stationary probability to have x customers

in the system. We have (λ+ γx)qx = min(x+ 1, s)qx+1, for 0 ≤ x ≤ n− 1. This leads to

qx = q0

γxΓ
(
λ
γ + x

)
x!Γ

(
λ
γ

) , for 0 ≤ x ≤ s, and, qx = q0

γxΓ
(
λ
γ + x

)
s!sx−sΓ

(
λ
γ

) , for s ≤ x ≤ n, with, (10)

q0 =

s−1∑
x=0

γxΓ
(
λ
γ + x

)
x!Γ

(
λ
γ

) +

n∑
x=s

γxΓ
(
λ
γ + x

)
s!sx−sΓ

(
λ
γ

)
−1

, (11)

where Γ(z) is the Gamma-function defined for all complex numbers except the non-positive integers as Γ(z) =∫ ∞
t=0

tz−1e−t dt. Recall that this queueing model as been studied in Daw and Pender (2020) with an infinite

number of servers. As such, the stationary probabilities in Daw and Pender (2020), given in Theorem 3.3 can

be deduced from our results in Equations (10) and (11) by letting s tend to infinity. The expected number of

customers in the system is given by E(N) =
n∑
x=0

x · qx. The expected rate of rejected customers is the rate of

customers arriving at state x = n; E(R) = (λ+ nγ)qn. Therefore, we deduce that

E(N) =

s−1∑
x=0

x
γxΓ

(
λ
γ

+x
)

x! +
n∑
x=s

x
γxΓ

(
λ
γ

+x
)

s!sx−s

s−1∑
x=0

γxΓ
(
λ
γ

+x
)

x! +
n∑
x=s

γxΓ
(
λ
γ

+x
)

s!sx−s

, and, E(R) = (λ+ γn)

γnΓ
(
λ
γ

+n
)

s!sn−s

s−1∑
x=0

γxΓ
(
λ
γ

+x
)

x! +
n∑
x=s

γxΓ
(
λ
γ

+x
)

s!sx−s

. (12)

We now illustrate the applicability of our algorithm and investigate the effect of the congestion-attraction

feature. In Table 2, we give the optimal threshold and optimal cost computed using the results of Section 5.1.

We observe that the rejection threshold, n∗, decreases with λ and γ and increases with s. When customer

arrivals increase, either due to an increase in λ and or in γ, congestion in the system increases and the rejection

threshold needs to be decremented to avoid excessive congestion. Large systems are known to handle a given

workload better than small systems. Therefore, the rejection threshold should be incremented as s increases

in order to accept more customers. This result is a consequence of Proposition 4. While these results are

intuitive and expected, it should be noted that they are only significant for low arrival rates (or a high number
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Table 2: Numerical Illustration (cR = 1)

Exogenous parameters Optimal results Approximations
λ γ E(N) E(R) n∗ Optimal Cost Approx1-Cost Approx2-Cost
6 0.1 7.469 0.003 40 0.003 -3 0
6 0.5 8.840 2.076 12 2.076 1 0

s = 10, 6 1 8.571 6.000 10 6.000 6 0
cN = 0 12 0.1 12.558 3.548 15 3.548 3 0

12 0.5 9.818 7.521 11 7.521 7 0
12 1 9.231 12.000 10 12.000 12 0
6 0.1 7.251 0.013 23 0.738 -2 0.667
6 0.5 8.179 2.092 11 2.910 2 1.2

s = 10, 6 1 0.000 6.000 0 6.000 7 -
cN = 0.1 12 0.1 10.849 3.624 13 4.709 4 1.333

12 0.5 8.927 7.536 10 8.429 8 2.4
12 1 0.000 12.000 0 12.000 13 -
30 0.1 33.353 0.000 186 0.000 -15 0
30 0.5 47.456 6.960 53 6.960 5 0

s = 50, 30 1 48.387 30.000 50 30.000 30 0
cN = 0 60 0.1 53.974 15.736 57 15.736 15 0

60 0.5 49.643 35.595 51 35.595 35 0
60 1 49.180 60.000 50 60.000 60 0
30 0.1 33.353 0.000 186 3.335 -10 3.333
30 0.5 46.678 7.025 52 11.693 10 6

s = 50, 30 1 0.000 30.000 0 30.000 35 -
cN = 0.1 60 0.1 52.080 15.795 55 21.003 20 6.667

60 0.5 48.675 35.663 50 40.530 40 12
60 1 0.000 60.000 0 60.000 65 -

of servers). This means that fewer mistakes can be made when dimensioning a crowded system when the

arrival rate is hard to forecast.

We also observe that the rate of rejected customers is not necessarily decreasing in n. This explains why we

do not have n∗ =∞ when cN = 0. With γ > 0, two phenomena are in competition as the rejection threshold

increases. On the one hand increasing n allows the system to accept more customers and should reduce the

rate of rejected customers. On the other hand increasing n increases the generation of new customers as

the system is more congested. For small values of n, the former phenomenon is dominant while the latter

becomes dominant for higher values of n. From a managerial viewpoint, this means that by accepting more

customers, we may create an attraction phenomemon which could result in rejecting more customers at the end.

This may be an unintended consequence of increasing the threshold level. For our optimization problem, the

threshold level was understood as a way to provide a trade-off between customers rejection and the number of

customers in the system. The intuition was that increasing the threshold would be detrimental to the number

of customers in the system while being beneficial to the rate of rejected customers. Our study instead reveals

that increasing the threshold can be detrimental for both the two aforementioned metrics when the system is

large. This precludes creating systems that are too large where over-congestion and high rejection rates would

be encountered simultaneously.

Finally, we observe that the effect of γ is reduced with high arrival rates while it increases in large systems.

With high arrival rates, the rejection threshold should be reduced so as to avoid excessive congestion. As the

number of customers in the system cannot grow large, the rate of arrivals generated by these customers cannot

be high either. With symmetrical arguments, this also explains why the effect of γ increases with the number
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of servers. Consequently, in small and busy systems, like in restaurants at peak hours, it is not possible for

crowd-attraction to operate. In the long-run, it also means that such systems do not have much opportunity

to attract new (uninformed) customers. Extending opening hours to less busy periods may help to increase

the benefit of attraction created by present customers.

Approximations in extreme workload situations. We end this section by providing approximations for

the optimal cost in high and low workload situations for large systems. These approximations are given in

Proposition 5. They correspond to the limits of E(N) and E(R) when the system parameters n, s, and λ tend

to infinity with the relations n = rs, with r ≥ 1 and λ = qs, with q > 0. We introduce the ∼ symbol and

write an ∼ bn if lim
n−→∞

an
bn

= 1.

Proposition 5. We let n = rs, with r ≥ 1 and λ = qs, with q > 0. The following holds:

• Approximation 1: If q + rγ − 1 > 0 (High workload), then E(R) ∼ s (q − 1 + rγ), and E(N) ∼ rs.

• Approximation 2: If q + rγ − 1 ≤ 0 (Low workload), then E(R) tends to zero as n tends to infinity,

and E(N) ∼ λ
1−γ .

The simplicity of the expressions in Proposition 5 allows the system manager to take simple combined

decisions for the system capacity and the staffing level. However, the number of servers should be very large

to have a good approximation of the real system. In the last two columns of Table 2, the approximated costs

are also computed. We observe an important gap between the approximations and the real values. This is

due to the number of servers being less than 50. With a small number of servers, the approximations are good

only in over-staffed (Approximation 1) under-staffed (Approximation 2) situations.

6 Conclusion

This paper analyzed a queue with state-dependent arrival rates accounting for wait-aversion and crowd-

attraction. We investigated the admission control problem for this queue and proved that the optimal policy

for this problem is of the threshold type when the arrival rate is decreasing and convex. Next, by restrict-

ing the analysis to stationary policies in the increasing case, we proved that the optimal policy remains of a

threshold nature. Moreover, we showed that the first local minimum of the system cost obtained by increasing

the threshold level is the optimal threshold level. We illustrated our results for a linearly increasing arrival

rate of the form λ(x) = λ+ γx, for x ≥ 0. Our numerical investigations showed that dimensioning a crowded

system is easier as mistakes in predicting the arrival rate have fewer consequences, that very large systems
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accumulate the negative aspect of high rejection, and that over-congestion, and and the crowd-attraction only

has a small impact in highly congested situations.

In methodological terms, it would be interesting to extend the proof of optimality of a threshold policy to

any form of arrival rate. We only determined a necessary condition for the optimal threshold to be infinite. It

could be interesting for computational purposes to obtain a necessary and sufficient condition for this property.

Rather than having all agents present at opening time, it would be less costly to give a later appointment to

each server in order to avoid wasted capacity. From a modeling perspective, extensions could be considered

to better model the operational complexity of service systems, as well as that of customer behavior. One

important extension would be to allow for non-stationary, batch arrivals or customers’ abandonment. While

non-stationarity requires different methodological tools from ours, batch arrivals only involve higher jumps in

the Markov chain which would not affect most of the proven properties in this paper if the batches are of equal

size. The analysis might be more complicated with batches of unequal size. Moreover, the service process

may include multiple pools of agents, as well as more complex service requirements. Including this complexity

in our model could, however, lead to an increase in the dimensionality of the problem, which may make it

difficult to obtain optimal policies.
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A Proof of Theorem 1

Proof. We show by induction on k that Vk(x) is increasing and convex in x, for x ≥ 0. Since V0(x) = 0,

V0(x) is increasing and convex. Assume that Vk(x) is increasing and convex. We want to show that the same

property holds for Vk+1(x).

We rewrite Equation (1) as

(λ(0) + s)Vk+1(x) = cN (λ(0) + s)x+A(Vk(x)) + S(Vk(x)), (13)

where A(Vk(x)) = λ(x) min(cR + Vk(x), Vk(x + 1)) + (λ(0) − λ(x))Vk(x), and S(Vk(x)) = min(x, s)Vk(x −

1) + (s−min(x, s))Vk(x). The function cN (λ(0) + s)x is increasing and convex. There remains to prove that

A(Vk(x)) and S(Vk(x)) are also increasing and convex.

A(Vk(x)) is increasing in x. For x ≥ 0, we have

A(Vk(x+ 1))−A(Vk(x)) = λ(x+ 1)(min(cR + Vk(x+ 1), Vk(x+ 2))−min(cR + Vk(x), Vk(x+ 1))) (14)

+ (λ(x+ 1)− λ(x)) min(cR + Vk(x), Vk(x+ 1))

+ (λ(0)− λ(x))(Vk(x+ 1)− Vk(x))− (λ(x+ 1)− λ(x))Vk(x+ 1).

Three cases can be encountered.

Case 1: min(cR + Vk(x+ 1), Vk(x+ 2)) = Vk(x+ 2) and min(cR + Vk(x), Vk(x+ 1)) = Vk(x+ 1). In this case,

Equation (14) can be rewritten as

A(Vk(x+ 1))−A(Vk(x)) = λ(x+ 1)(Vk(x+ 2)− Vk(x+ 1)) + (λ(0)− λ(x))(Vk(x+ 1)− Vk(x)) ≥ 0,

22



since Vk(x) is increasing in x.

Case 2: min(cR + Vk(x + 1), Vk(x + 2)) = cR + Vk(x + 1) and min(cR + Vk(x), Vk(x + 1)) = cR + Vk(x).

Equation (14) then becomes

A(Vk(x+ 1))−A(Vk(x)) = λ(x+ 1)(Vk(x+ 1)− Vk(x)) + (λ(x+ 1)− λ(x))(cR + Vk(x)− Vk(x+ 1))

+ (λ(0)− λ(x))(Vk(x+ 1)− Vk(x)).

The terms on the right hand side of the equations are all positive, since Vk(x) is increasing. The term

proportional with λ(x+ 1)− λ(x) is negative since we assumed that cR + Vk(x) ≤ Vk(x+ 1). Yet, since λ(x)

is decreasing in x, the product (λ(x+ 1)− λ(x))(cR + Vk(x)− Vk(x+ 1)) is positive.

Case 3: min(cR+Vk(x+1), Vk(x+2)) = cR+Vk(x+1) and min(cR+Vk(x), Vk(x+1)) = Vk(x+1). Equation

(14) is then

A(Vk(x+ 1))−A(Vk(x)) = λ(x+ 1)cR + (λ(0)− λ(x))(Vk(x+ 1)− Vk(x)) ≥ 0,

since cR ≥ 0 and Vk(x) is increasing in x. This proves that A(Vk(x)) is increasing in x.

A(Vk(x)) is convex in x. For x ≥ 0, we may write

A(Vk(x+ 2)) +A(Vk(x))− 2A(Vk(x+ 1)) (15)

= λ(x+ 2)(min(cR + Vk(x+ 2), Vk(x+ 3)) + min(cR + Vk(x), Vk(x+ 1))− 2 min(cR + Vk(x+ 1), Vk(x+ 2)))

+ (λ(x)− λ(x+ 2)) min(cR + Vk(x), Vk(x+ 1))− 2(λ(x+ 1)− λ(x+ 2)) min(cR + Vk(x+ 1), Vk(x+ 2))

+ (λ(0)− λ(x))(Vk(x+ 2) + Vk(x)− 2Vk(x+ 1))

− (λ(x+ 2)− λ(x))Vk(x+ 2) + 2(λ(x+ 1)− λ(x))Vk(x+ 1).

We show that the right hand side of Equation (15) is positive. let us consider the first line after the equality.

We call this line L1. We have

2 min(cR + Vk(x+ 1), Vk(x+ 2)) ≤ 2Vk(x+ 2), (16)

2 min(cR + Vk(x+ 1), Vk(x+ 2)) ≤ cR + Vk(x+ 1) + Vk(x+ 2), (17)

2 min(cR + Vk(x+ 1), Vk(x+ 2)) ≤ 2cR + 2Vk(x+ 1). (18)
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Case 1: min(cR +Vk(x+ 2), Vk(x+ 3)) = Vk(x+ 3) and min(cR +Vk(x), Vk(x+ 1)) = Vk(x+ 1). In this case,

Inequality (16) combined with the convexity of Vk proves that L1 is positive.

Case 2: min(cR + Vk(x+ 2), Vk(x+ 3)) = cR + Vk(x+ 2) and min(cR + Vk(x), Vk(x+ 1)) = Vk(x+ 1). In this

case, Inequality (17) proves that L1 is positive.

Case 3: min(cR + Vk(x + 2), Vk(x + 3)) = cR + Vk(x + 2) and min(cR + Vk(x), Vk(x + 1)) = Vk(x) + cR. In

this case, Inequality (18) combined with the convexity of Vk proves that L1 is positive.

Note that the case min(cR + Vk(x+ 2), Vk(x+ 3)) = Vk(x+ 3) and min(cR + Vk(x), Vk(x+ 1)) = Vk(x) + cR

cannot happen because it is in contradiction with the convexity property of Vk.

The third line of the right hand side of Equation (15) is also positive since Vk is convex in x.

Let us now consider the sum of the second and fourth line on the right hand side of Equation (15). This

sum is called L2 + L4.

Case 1: min(cR + Vk(x), Vk(x+ 1)) = Vk(x+ 1) and min(cR + Vk(x+ 1), Vk(x+ 2)) = Vk(x+ 2). In this case,

we have

L2 + L4 = (λ(x+ 2) + λ(x)− 2λ(x+ 1))(Vk(x+ 2)− Vk(x+ 1)) ≥ 0,

since λ(x) is convex in x and Vk is increasing in x.

Case 2: min(cR + Vk(x), Vk(x + 1)) = Vk(x + 1) and min(cR + Vk(x + 1), Vk(x + 2)) = cR + Vk(x + 1). We

thus have

L2 + L4 = (λ(x+ 2) + λ(x)− 2λ(x+ 1))cR + (λ(x)− λ(x+ 2))(Vk(x+ 2)− Vk(x+ 1)− cR) ≥ 0,

since λ(x) is convex in x, cR ≥ 0, and since we assumed Vk(x+ 1) + cR ≤ Vk(x+ 2).

Case 3: min(cR + Vk(x), Vk(x+ 1)) = cR + Vk(x) and min(cR + Vk(x+ 1), Vk(x+ 2)) = cR + Vk(x+ 1). We

thus have

L2 + L4 = (λ(x+ 2) + λ(x)− 2λ(x+ 1))cR + (λ(x)− λ(x+ 2))(Vk(x+ 2) + Vk(x)− 2Vk(x+ 1)) ≥ 0,

since λ(x) is convex in x, cR ≥ 0, λ(x) is decreasing in x, and Vk(x) is convex in x. This finally proves that

A(Vk(x)) is convex in x.
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S(Vk(x)) is increasing in x. For x ≥ 0, we have

S(Vk(x+ 1))− S(Vk(x)) = min(x, s)(Vk(x)− Vk(x− 1)) + (s−min(x+ 1, s))(Vk(x+ 1)− Vk(x)) ≥ 0, (19)

since Vk is increasing in x.

S(Vk(x)) is convex in x. For x ≥ 0, we have

S(Vk(x+ 2)) + S(Vk(x))− 2S(Vk(x+ 1)) = min(x, s)(Vk(x+ 1) + Vk(x− 1)− 2Vk(x)) (20)

+ (min(x+ 2, s)−min(x, s))Vk(x+ 1)− 2(min(x+ 1, s)−min(x, s))Vk(x)

+ (s−min(x+ 2, s))(Vk(x+ 2) + Vk(x)− 2Vk(x+ 1)) + (min(x+ 2, s)−min(x, s))Vk(x)

− 2(min(x+ 2, s)−min(x+ 1, s))Vk(x+ 1)

≥ (2 min(x+ 1, s)−min(x, s)−min(x+ 2, s))(Vk(x+ 1)− Vk(x)).

If x ≤ s− 2, then 2 min(x+ 1, s)−min(x, s)−min(x+ 2, s) = 2(x+ 1)− x− (x+ 2) = 0.

If x = s− 1, then 2 min(x+ 1, s)−min(x, s)−min(x+ 2, s) = 2s− (s− 1)− s = 1.

If x ≥ s, then 2 min(x+ 1, s)−min(x, s)−min(x+ 2, s) = 2s− s− s = 0.

In all cases 2 min(x + 1, s) − min(x, s) − min(x + 2, s) ≥ 0. Therefore, since Vk is increasing in x, S(Vk) is

convex in x.

B Proof of Proposition 1

Proof. Assume that cR
λ(x)−λ(x+1)+min(x+1,s)−min(x,s)

λ(0)+s ≥ cN for x ≥ 0. We prove by induction on k that

Vk(x)+cR ≥ Vk(x+1), for x ≥ 0. For k = 0, we have V0(x) = V0(x+1), for x ≥ 0. Hence, V0(x)+cR ≥ V0(x+1).

Assume now that for a given k ≥ 0, we have Vk(x) + cR ≥ Vk(x+ 1) for x ≥ 0. We deduce that

Vk+1(x) + cR − Vk+1(x+ 1) = −cN +
λ(x+ 1)

λ(0) + s
(Vk(x+ 1) + cR − Vk(x+ 2)) +

λ(x)− λ(x+ 1)

λ(0) + s
Vk(x+ 1)

+
min(x, s)

λ(0) + s
(Vk(x− 1) + cR − Vk(x)) +

min(x, s)−min(x+ 1, s)

λ(0) + s
Vk(x)

+

(
1− λ(x)

λ(0) + s
− min(x+ 1, s)

λ(0) + s

)
(Vk(x) + cR − Vk(x+ 1))− λ(x)− λ(x+ 1)

λ(0) + s
Vk(x+ 1)

− min(x, s)−min(x+ 1, s)

λ(0) + s
Vk(x) + cR

λ(x)− λ(x+ 1) + min(x+ 1, s)−min(x, s)

λ(0) + s

≥ cR
λ(x)− λ(x+ 1) + min(x+ 1, s)−min(x, s)

λ(0) + s
− cN ≥ 0.
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This proves the induction step and finishes the proof of the proposition.

C Proof of Theorem 2

Proof. From Equation (3), we have


min(x, s)∆(x)− λ(x)∆(x+ 1) ≤ cNx− g, and,

min(x, s)∆(x)− λ(x)cR ≤ cNx− g,
(21)

for x > 0. So, 
p(x)(min(x, s)∆(x)− λ(x)∆(x+ 1)) ≤ p(x)(cNx− g), and,

(1− p(x))(min(x, s)∆(x)− λ(x)cR) ≤ (1− p(x))(cNx− g),

(22)

for x > 0. Summing up the above equations and multiplying the result by qx leads to

min(x, s)∆(x)qx − p(x)λ(x)∆(x+ 1)qx − (1− p(x))λ(x)cRqx ≤ (cNx− g)qx,

for x > 0. From Equation (5), we have λ(x− 1)p(x− 1)qx−1 = min(s, x)qx, for x > 0. Therefore, we get

λ(x− 1)p(x− 1)qx−1∆(x)− p(x)λ(x)∆(x+ 1)qx − (1− p(x))λ(x)cRqx ≤ (cNx− g)qx, (23)

for x > 0. We assumed that ∆(x + 1) is bounded. Moreover, we restrict the analysis to stable stationary

policies. Therefore, p(x)λ(x) is also bounded and qx tends to zero as x tends to infinity. Thus, we have

lim
x−→∞

p(x)λ(x)∆(x + 1)qx = 0, and
∞∑
x=1

[λ(x− 1)p(x− 1)qx−1∆(x)− p(x)λ(x)∆(x+ 1)qx] = λ(0)p(0)q0∆(1),

∞∑
x=1

qx = 1− q0, and gS =
∞∑
x=0

(1− p(x))λ(x)cRqx + xcNqx. Therefore, summing up Equation (23) for x from 1

to infinity, leads to

λ(0)p(0)q0∆(1) + g(1− q0) ≤ gS − λ(0)(1− p(0))cRq0. (24)

Moreover, Equation (4) leads to

gq0 ≤ λ(0)q0(p(0)∆(1) + (1− p(0))cR). (25)

Summing up Equations (24) and (25) finally proves that g ≤ gS .
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D Proof of Lemma 1

Proof. We prove the result by induction on x, for x ∈ {1, 2, · · · ,min(n1, n2) + 1}. Assume that gn1 ≥ gn2 , for

n1, n2 ∈ N. From Equation (6), we have ∆n1(1) = gn1
λ(0) and ∆n2(1) = gn2

λ(0) . So, ∆n1(1) ≥ ∆n2(1). Assume now

that for a given x < min(n1, n2) + 1, we have ∆n1(x) ≥ ∆n2(x). Equation (7) leads to

∆n1(x+ 1) = −cNx− g
n1

λ(x)
+

min(x, s)

λ(x)
∆n1(x), and,

∆n2(x+ 1) = −cNx− g
n2

λ(x)
+

min(x, s)

λ(x)
∆n2(x).

Subtracting these two equations leads to

∆n1(x+ 1)−∆n2(x+ 1) =
gn1 − gn2

λ(x)
+

min(x, s)

λ(x)
(∆n1(x)−∆n2(x)) ≥ 0.

This finishes the proof of the lemma.

E Proof of Lemma 2

Proof. Since the cost parameters are all positive, we have gn ≥ 0. Therefore, Equation (6) proves that

∆n(1) ≥ 0. We also know that ∆n(n+ 1) = cR ≥ 0. Equation (7) can be rewritten as

∆n(x+ 1) =
min(x, s)

λ(x)
∆n(x) +

gN − cNx
λ(x)

.

The above relation indicates that if gn − cNx ≥ 0 and ∆n(x) ≥ 0 then ∆n(x+ 1) ≥ 0.

Now suppose ∆n(2) < 0. A necessary condition to have ∆n(2) < 0 given that ∆n(1) ≥ 0 is to have

gn − cN · 2 < 0. This implies gn − cN · x < 0 and ∆n(x) < 0 for x ≥ 2. This contradicts ∆n(n+ 1) = cR ≥ 0.

So, ∆n(2) ≥ 0. Analogous arguments yield ∆n(x) ≥ 0 for all 1 ≤ x ≤ n+ 1.

F Proof of Theorem 3

Proof. Assume that there exists m > 0 such that gm < gk, for k ∈ {0, 1, 2, · · · ,m − 1} and gm+1 ≥ gm. We

assume that m ≥ s. The case m < s can be treated in an identical way.
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Consider now the modified problem

cN min(x,m+ 1)− 1x>m(gm+1 − gm)− g̃ = min(min(x, s),min(m+ 1, s))∆̃(x) (26)

−min(λ(x), λ(m+ 1)) min(∆̃(x+ 1), cR),

for x > 0, and

g̃ = λ(0) min(∆̃(1), cR), (27)

for x = 0.

Since gm ≤ gm+1, Lemma 1 indicates that ∆m(x) ≤ ∆m+1(x), for x ∈ {1, · · · ,m+ 1}. Since ∆m(m+ 1) =

cR, we deduce that ∆m+1(m + 1) ≥ cR. Moreover, since gm ≤ gk for k ∈ {1, 2, · · · ,m}, Lemma 1 indicates

that ∆m(x) ≤ ∆k(x), for x ∈ {1, · · · , k + 1}. Since ∆k(k + 1) = cR, we deduce that ∆m(k) ≤ cR, for

k ∈ {1, 2, · · · ,m}. The inequalities ∆m(x) ≤ cR, for x ∈ {1, 2, · · · ,m} and ∆m+1(m + 1) ≥ cR prove that

g̃ = gm, ∆̃(x) = ∆m(x) for 1 ≤ x ≤ m, and ∆̃(x) = ∆m+1(m + 1) for x > m is the solution of the modified

problem (26)-(27). Therefore, the threshold policy with threshold m is optimal for the modified problem with

associated optimal cost gm.

Assume that m is not the optimal threshold for the original problem. Then, there exists n ≥ m + 2 such

that n = inf{k ≥ m+ 2 : gk < gm}. We denote by g̃n the long-run average expected cost of a threshold policy

with level n for the modified problem. Similarly, let ∆̃n(.) be the relative cost difference for the associated

modified problem. These values will coincide with those of the original problem for k ≤ m + 1. We want

to prove that g̃n < gn which would imply that such n cannot exist because gm < g̃n (i.e., m is the optimal

threshold level for the modified problem). Assume that g̃n − gn ≥ 0. Therefore, we have

g̃n = −(gm+1 − gm) + cN (m+ 1)− s∆̃n(n) + λ(m+ 1)cR, and, (28)

gn = cNn− s∆n(n) + λ(n)cR (29)

Subtracting Equation (29) from Equation (28) leads to

g̃n − gn = −(gm+1 − gm)− cN (n− (m+ 1)) + cR(λ(m+ 1)− λ(n)) + s(∆n(n)− ∆̃n(n)). (30)

Let us now prove that ∆n(n)− ∆̃n(n) < 0. Under the assumption g̃n − gn ≥ 0, Lemma 1 applies directly for

states x = 1, 2, · · · ,m + 1 giving ∆n(x) ≤ ∆̃n(x), for 1 ≤ x ≤ m + 1. For x ≥ m + 2, we show by induction
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on x that ∆n(x)− ∆̃n(x) ≤ 0. Since m ≥ s, we may write

λ(m+ 1)(∆n(x)− ∆̃n(x)) = s(∆n(x− 1)− ∆̃n(x− 1)) + gn − g̃n + gm − gm+1 (31)

− cN (x− 2−m) + (λ(m+ 1)− λ(x− 1))∆n(x)

We have ∆n(x − 1) − ∆̃n(x − 1) ≤ 0, due to the induction assumption. We assumed that gn − g̃n ≤ 0 and

gm−gm+1 ≤ 0. Finally, Lemma 2 proves that ∆n(x) ≥ 0 and since x ≥ m+2, we have λ(m+1)−λ(x−1) ≤ 0.

Therefore, Equation (31) proves that ∆n(x) − ∆̃n(x) ≤ 0, for x ≥ m + 2. Equation (30) then proves that

g̃n−gn < 0 which is in contradiction with our initial assumption. This shows that n cannot exist and gm < gk,

for k ≥ 0.

G Proof of Proposition 2

Proof. We prove the case −cN + (1 + λ(m)− λ(m+ 1))cR > 0, for 0 ≤ m ≤ s. The case −cN + (1 + λ(m)−

λ(m + 1))cR ≤ 0, for m ≥ 0 can be proven with the same approach. Since ∆0(1) = cR, Equation (6) leads

to g0 = λ(0)cR. Using Equations (6) and (7), we may write g1 = λ(0)∆1(1), and, cN − g1 = ∆1(1)− λ(1)cR.

This leads to g1 = λ(0)(cN+λ(1)cR)
λ(0)+1 . Therefore, we have g1 − g0 = λ(0)(cN+cR(λ(1)−λ(0)−1))

λ(0)+1 . We thus have,

g1 < g0 if and only if cN < (1 + λ(0) − λ(1))cR. Assume now that g0 > g1 > · · · > gm−1 > gm, with

m < s. We want to show that gm > gm+1. Let us assume that gm+1 ≥ gm. Since gm−1 > gm, Lemma

1 indicates that ∆m(x) < ∆m−1(x), for x ∈ {1, 2, · · · ,m}. Since gm+1 ≥ gm, Lemma 1 indicates that

∆m(x) ≤ ∆m+1(x), for x ∈ {1, 2, · · · ,m + 1}. Moreover, ∆m−1(m) = cR and ∆m(m + 1) = cR. So,

∆m(m) < cR and ∆m+1(m+ 1) ≥ cR. Equation (7) leads to

gm = cNm−m∆m(m) + λ(m)cR, and,

gm+1 = cN (m+ 1)− (m+ 1)∆m+1(m+ 1) + λ(m+ 1)cR.

Since ∆m(m) < cR and ∆m+1(m+ 1) ≥ cR, we have

gm > cNm−mcR + λ(m)cR, and,

gm+1 ≤ cN (m+ 1)− (m+ 1)cR + λ(m+ 1)cR.

The two above inequalities lead to gm > gm+1 − cN + (1 + λ(m) − λ(m + 1))cR > gm+1, since −cN + (1 +

λ(m)− λ(m+ 1))cR > 0. This is in contradiction with gm+1 ≥ gm and proves that gm+1 < gm.
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H Proof of Proposition 3

Proof. Consider the following modified problem:

− λ(n)(cR −∆n(n))− g′ = −λ(0) min(∆′(1), cR), (32)

cNx− λ(n)(cR −∆n(n))− g′ = min(x, s)∆′(x)− λ(x) min(∆′(x+ 1), cR), for 1 ≤ x < n, and (33)

cNn− (λ(x)− λ(n))∆n(n)− g′ = min(x, s)∆′(x)− λ(x) min(∆′(x+ 1), cR), for x ≥ n. (34)

For this modified problem, the cost per customer in the system of the original problem, cNx, for x ≥ 0, is

replaced in the modified problem by cNx−λ(n)(cR−∆n(n)), for 0 ≤ x ≤ n and by cNn− (λ(x)−λ(n))∆n(n),

for x ≥ n. Since λ(x) is increasing in x and 0 ≤ ∆n(n) ≤ cR (Lemma 1 and Lemma 2), the cost per customer

in the modified problem is reduced as compared to the cost per customer in the original problem. So, g′ ≤ g.

For the modified problem, we observe that g′ = gn−λ(n) (cR −∆n(n)), ∆′(x) = ∆n(x), for 1 ≤ x ≤ n and

∆′(x) = ∆n(n), for x ≥ n is the solution of Equations (32)-(34). Therefore, we have gn−λ(n) (cR −∆n(n)) ≤

g. We have g ≥ g as stationary policies are a restriction of the set of admissible policies. Therefore, when gn

is decreasing in n, we have gn − g ≤ gn − g ≤ λ(n) (cR −∆n(n)) which proves the result.

I Proof of proposition 4

Proof. let us start with the decreasing property of the expected cost in s for a fixed rejection threshold, n.

Since we are interested in the effect of s when n is kept constant, we denote the expected cost by gs and

the relative difference by ∆s, when s servers are present in the system, for 1 ≤ s ≤ n. Assume that for

a given s, such that 1 ≤ s ≤ n − 1, we have gs ≤ gs+1. In what follows, we show that this leads to a

contradiction. From Equation (6), we have λ(0)(∆s(1) −∆s+1(1)) = gs − gs+1. Therefore, since gs ≤ gs+1,

we have ∆s(1) ≤ ∆s+1(1). Assume that ∆s(x) ≤ ∆s+1(x), for x ≥ 1. Equation (7) can be rewritten as

λ(x)(∆s(x+ 1)−∆s+1(x+ 1)) = gs − gs+1 + min(x, s)∆s(x)−min(x, s+ 1)∆s+1(x), (35)

for 1 ≤ x ≤ n. Since min(x, s + 1) ≥ min(x, s), ∆s(x) ≤ ∆s+1(x), and gs ≤ gs+1, Equation (35) proves that

∆s(x+ 1) ≤ ∆s+1(x+ 1). Therefore, by induction on x, we proved that ∆s(x) ≤ ∆s+1(x), for 1 ≤ x ≤ n. By

replacing x by n in Equation (35), given that ∆s(n+ 1) = ∆s+1(n+ 1) = cR, we get

gs+1 − gs = min(n, s)∆s(n)−min(n, s+ 1)∆s+1(n) ≤ 0.
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This is in contradiction with the initial assumption. Therefore, we have gs > gs+1.

We employ the same approach to prove that gs is convex in s. Assume that there exists s such that 2gs+1−

gs − gs+2 ≥ 0. Equation (6) leads to λ(0)(2∆s+1(1)−∆s(1)−∆s+2(1)) = 2gs+1 − gs − gs+2. Therefore, since

2gs+1−gs−gs+2 ≥ 0, we have 2∆s+1(1)−∆s(1)−∆s+2(1) ≥ 0. Assume that 2∆s+1(x)−∆s(x)−∆s+2(x) ≥ 0,

for x ≥ 1. Equation (7) can be rewritten as

λ(x)(2∆s+1(x+ 1)−∆s(x+ 1)−∆s+2(x+ 1)) = 2gs+1 − gs − gs+2 (36)

+ 2 min(x, s+ 1)∆s+1(x)−min(x, s)∆s(x)−min(x, s+ 2)∆s+2(x),

for 1 ≤ x ≤ n.

Case 1: x ≤ s. In this case, we have

2 min(x, s+ 1)∆s+1(x)−min(x, s)∆s(x)−min(x, s+ 2)∆s+2(x) = x(2∆s+1(x)−∆s(x)−∆s+2(x)) ≥ 0.

Case 2: x ≥ s+ 2. For this case, we get

2 min(x, s+ 1)∆s+1(x)−min(x, s)∆s(x)−min(x, s+ 2)∆s+2(x) = s(2∆s+1(x)−∆s(x)−∆s+2(x))

+ 2(∆s+1(x)−∆s+2(x)).

Since gs is decreasing in s, we can prove by induction that ∆s(x) is also decreasing in s. This proves that

2 min(x, s+ 1)∆s+1(x)−min(x, s)∆s(x)−min(x, s+ 2)∆s+2(x) ≥ 0.

Case 3: x = s+ 1. This case leads to

2 min(x, s+ 1)∆s+1(x)−min(x, s)∆s(x)−min(x, s+ 2)∆s+2(x) = s(2∆s+1(x)−∆s(x)−∆s+2(x))

+ (2∆s+1(x)−∆s+2(x)) ≥ 0.

This proves by induction on x that 2∆s+1(x)−∆s(x)−∆s+2(x) ≥ 0, for x ≥ 1. As for the decreasing property,

by replacing x by n in Equation (36), we obtain a contradiction which subsequently proves that gs is convex

in s.
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J Proof of Proposition 5

Proof. Let us denote by E(R)n, the throughput of rejected customers for threshold level n (n ≥ s). We want

to obtain an equivalent expression of E(R)n as n tends to infinity with n = rs, r ≥ 1 and λ = qs with

q > 0. Observe that E(R)n
E(R)n+1

= s
λ+(n+1)γ

(
1 + E(R)n

s

)
. This relation leads to E(R)n+1 = E(R)n

λ+(n+1)γ
s+E(R)n

=

E(R)n
n( qr+γ)+γ

n 1
r

+E(R)n
, for n ≥ s. We define the sequence un by E(R)n = n1

run, for n ≥ s. This leads to

un+1 = un
1+un

(
q + rγ + −q

(n+1)

)
, for n ≥ s. We now consider the sequence vn defined by vn+1 = f(vn),

for n ≥ s, where f(x) = x
1+x(q + rγ), for x > 0. As n tends to infinity un and vn are equivalent.

Case 1: q + rγ − 1 > 0.

We have f(0) = 0, and f(q+rγ−1) = q+rγ−1. Since f is increasing, we have f((0, q+rγ−1]) ⊂ (0, q+rγ−1]

and f([q + rγ − 1,∞)) ⊂ [q + rγ − 1,∞). We have vn+1 − vn = vn
1+vn

(q + rγ − 1− vn). So vn+1 > vn if and

only if vn < q + rγ − 1. Therefore, either vs < q + rγ − 1 and vn is increasing with vn < q + rγ − 1 for n > s,

or vs > q + rγ − 1 and vn is decreasing with vn > q + rγ − 1 for n > s. This proves in both cases that vn has

a finite limit as n tends to infinity. This limit is q + rγ − 1. This proves that un ∼ q + rγ − 1 as n tends to

infinity and E(R) ∼ s (q − 1 + rγ) , as n tends to infinity.

Case 2: q + rγ − 1 ≤ 0.

In this case, vn+1 − vn = vn
1+vn

(q + rγ − 1− vn) ≤ 0 since vn > 0. So vn is decreasing and vn > 0. The

only possible limit of vn (and un) as n tends to infinity is therefore zero. In a similar way, using E(N)n+1 =

E(N)n+(n+1)
E(R)n
s

1+
E(R)n
s

, we show the asymptotic expressions of E(N) as n tends to infinity.
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