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Abstract

We analyze a service system with inbound and outbound customers. Inbound customers arrive
over time depending on the offered waiting time while outbound customers can be contacted at all
times. The agents are in control of the routing decisions. Knowing system state, they decide whether
to serve an inbound customer, an outbound one, or to idle. The system manager seeks to provide
a good trade-off between the performance of inbound and outbound customers by incentivizing
the agents’ actions through linear payouts. Our aim is to evaluate the cost of agents’ self-routing.
This problem is a novel variant of the principal–agent problem where the agents’ effort consists of
selecting their routing policy. From a Markov decision process, we show that the optimal policy for
the agents is a reservation threshold policy for inbound customers and we express the compensation
parameters that minimize the staffing cost.

We conclude that motivating idling decisions through linear payouts is very costly with respect
to the improvement provided for inbound customers. This justifies the current practice at most
call centers of using automated routing. Moreover, paying for idling cannot reduce staffing cost.
Nevertheless, discriminating between delayed and non-delayed customers in the reward structure
has a high potential to reduce the agents’ pay. Finally, when agents do not know the status (idle or
busy) of their colleagues, our analysis argues in favor of not revealing the system state to the agents
through delay announcements when the objective waiting time for inbound customers is low.
Keywords: Blended queue; incentives; reservation; self-routing.

1 Introduction

Many organizations, such as call centers and hospitals, face highly unpredictable demand that often

results in long waits for customers or long idling times for agents. To improve the level of customer

service, alleviate congestion, and to make a better use of the available resources, these systems face

challenging routing issues. When assigning customers to agents, firms must decide on performance

objectives, priority rules, queue discipline, and agent selection while considering staffing cost, service

urgency, demand forecast, agent skills and preferences, and past performances. The complexity of

routing problems has led to a large number of studies, particularly in the field of call centers (Aksin

et al., 2007). The underlying assumption in these studies is the ability of the firm to tell agents when and

on which task to work. One advantage of exercising control over agents is its simplicity. By generating

automatic decisions, employees do not waste time rationalizing their actions. This approach is also

supported by the idea that employees can only make decisions that are beneficial in the short-term,

and unable to make decisions that consider long-term goals.

Nevertheless, agents do not necessarily adhere to their assigned tasks. This generates human

resource issues like turn-over and absenteeism (Hillmer et al., 2004). Alternatively to this practice,

some firms allow agents to decide when to work. This is called self-scheduling. It results in better morale

and improved work–life balance (Koning, 2014). In service-based organizations, such as ride-sharing

services, self-scheduling is increasingly used. In hospitals, nurses often choose self-scheduling (Hung,



2002; Bailyn et al., 2007; Rönnberg and Larsson, 2010). In work-from-home call centers, like LiveOps,

agents can decide when they wish to be available (Stouras et al., 2014; Gurvich et al., 2019; Brunelli,

2020). Although increasingly used, self-scheduling is often restricted to the decision of when to work

and does not encompass the decision of on which task to work. This is the case in work-from-home call

centers where the routing of customers remains under external control. Letting agents be in charge of

customer selection for service is nevertheless a trend as it allows agents to take a responsible and active

role in the company and could liberate the system manager from the burden of exercising control.

Without direct control of customers selection, the system manager relies on payouts to incentivize the

agents’ actions. Therefore, asking agents to be in charge with the routing of customers to service, in

the so-called the strategy of self-routing, has a cost for the service system. The aim of this paper is to

evaluate this cost and to determine the efficiency of agents’ self-routing.

To this end, we consider the blended queue model with inbound and outbound customers of Gans

and Zhou (2003) and Bhulai and Koole (2003). Inbound customers arrive randomly over time, adjust

their joining strategy to the offered waiting time and are urgent while outbound customers can be

contacted at any point in time and are non-urgent. Moreover, the agents can serve both inbound and

outbound customers. This flexibility allows the system to provide a good service quality for the two

classes of customers although it results in higher training costs than when agents are specialized in

one type of service (Echchakoui, 2016). The blended queue well models multi-channel call centers with

inbound and outbound calls. CarFinance247, for instance, the UK’s largest online car finance broker,

helps customers to find cars online and to get approval for financing by utilizing both inbound and

outbound channels. The economic importance of blended contact centers has been demonstrated over

the last few decades by the high number of patents specifically devoted to staffing and scheduling issues

(Dumas et al., 1996; Villena et al., 2004; Anisimov et al., 2017). A lack of resources also led hospital

emergency departments to adopt blended strategies for the available resources (operating rooms, nurses,

anesthesiologists, and surgeons) to treat both elective patients (i.e., outbound patients, already present

or scheduled in advance) and non-elective patients (i.e., inbound patients arriving randomly over time).

Due to the competition between the two classes of customers for the same resource, setting an

efficient payout contract to incentivize the agents’ actions is complex. For instance if inbound and

outbound services are equally rewarded, agents could be tempted to initiate outbound services at all

times to maximize their profit. However, if all agents are constantly working, all inbound customers

will be delayed, leading to a poor quality of service for these customers. This can be avoided if a
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sufficient number of agents remains available for the service of inbound customers. Thus, the challenge

in setting the payouts for inbound and outbound services is not only in inducing a priority rule between

the two classes of customers but also inducing a reservation policy where some agents could choose to

remain idle for a future inbound customer service instead of initiating an outbound service.

We analyze the issue of agents self-routing in this context using a principal–agent framework with

moral hazard and linear compensation (Laffont and Martimort, 2009) in the first- and second-best

settings. We assume that the principal (the system manager) wants to minimize the long-run expected

staffing cost of inducing the agents to choose the reservation policy which provides the optimal trade-

off between the rate of served outbound customers and the expected waiting time of served inbound

customers. The agents know the state of the system and coordinate their effort to select the reservation

policy that maximizes their expected utility defined as the difference between their revenue and their

effort-cost.

As a first step of the analysis, we evaluate the parameters of the state-dependent equilibrium joining

strategy of customers. In the second-best setting, it allows us to develop a Markov decision process

to derive the optimal reservation policy. In the case of highly wait-averse customers, we prove that

the optimal reservation policy is a deterministic threshold one. This result indicates that self-routing

cannot induce the first-best effort as the optimal policy in the first-best setting is non-deterministic

and randomizes in between adjacent threshold levels. In a context with equal service rates between

inbound and outbound customers, we prove that there exists a unique local maximum of the agents’

utility and that the reservation level increases with the reward for serving an inbound customer. This

in turn enables us to express the compensation parameters which minimize the staffing cost in the first-

and second-best settings.

Our numerical investigations reveal that the cost of achieving a low waiting time for inbound cus-

tomers can grow extremely high in the second-best setting as compared to the first-best one. In support

of this observation, we prove the convexity of the variable part of the staffing cost in the objective wait-

ing time for inbound customers. The high staffing cost with linear piece rate compensation is mainly

due to the high cost for serving an inbound customer as this one should compensate agents for the idling

time before service. This result justifies the current situation in call centers where routing decisions

are automated by the system. Even if self-routing may be more satisfying from a human-resources

management perspective, its cost precludes implementation.

Thus, we question whether the linear piece rate compensation model could be modified to reduce
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the staffing cost. For the purpose of reducing the payout of inbound customers, we consider the

possibility of paying the agents to idle before service as an extra motivation to remain available for

inbound customers. However, we prove that this strategy does not reduce the staffing cost and should

consequently be excluded. Next, since the non-delayed inbound customers are only those who benefit

from the agents’ reservation, we consider the possibility to discriminate between the delayed and the

non-delayed customers in the agents’ pay. In this way, the customers’ service level influences the

reward structure. This modification of the payment contract significantly reduces the staffing cost,

suggesting a stronger potential for implementation, especially when the objective waiting time for

inbound customers is low. Another advantage of this change is that the staffing cost is close to being a

constant function of the objective waiting time for inbound customers. Thus, for the system manager,

when selecting a waiting time objective for inbound customers, the resulting cost is no longer an issue.

One assumption of our analysis is that agents can observe the state of the system and may make

decisions based on this observation. However, in virtual systems like call centers, agents may not

know the status (idle or busy) of their colleagues. To account for such systems, we investigate the

non-observable case for the agents. We show that the optimal policy is a randomizing policy and that

there exists a unique maximum of the agents’ utility in the randomizing parameter. Next, as in the

observable case, we express the reward parameters in the second-best setting. Although non-observable

by nature, call centers can be made observable to the agents by announcing their idling delays before

receiving an inbound customer. This possibility allows us to question whether announcing delays to

agents is profitable to the system. Our analysis argues in favor of announcing delays to the agents

only when the objective waiting time for inbound customers is high. On the contrary, not announcing

delays has the potential to reduce the staffing cost when the objective waiting time is low as agents

would then make decisions based on the average idling duration and not on the actual and potentially

long expected idling duration.

Structure of the article. We end this section with a review of the literature. Section 2 formulates

the optimzation problem. Section 3 evaluates the cost of self-routing for reservation policies. Section 4

analyzes extensions of the compensation model. Section 5 considers a context where agents do not

know the state of the system and questions the opportunity of announcing idling delays to agents.

Finally, Section 6 concludes the paper. The proofs of the main results and the closed-form expressions

of the performance measures in the case of equal service rates are provided in the appendix.
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Literature review. As our study relates to the analysis of compensation design, we first present

studies in this field from non-queueing contexts. Next, in relation to the queueing model considered in

this paper, we detail the literature on blended queues. As customers’ and agents’ decision actions are

endogenous in our study, we then briefly describe important references on customers’ joining decisions

and elaborate on agents’ service speed selection and agents’ self-scheduling problems.

There is a long history of compensation analyses in the fields of marketing, economics, heath care,

and operations management (e.g., Lal and Srinivasan (1993); Herweg et al. (2010); Jain (2012); Chen

et al. (2016); Suen et al. (2018); Li et al. (2020)). This literature stream focuses on linear commission

and quota-bonus contracts (i.e., the employee receives a bonus for meeting a performance quota). Jain

(2012) showed that firms can reduce the negative consequences of self-control by employing multiperiod

quotas (such as annual quotas) to compensate employees for their cumulative performance instead of

receiving direct rewards. In a producer–seller relationship, Chen et al. (2016) compared forecast-based

and linear compensation contracts. They showed that with an endogenous information-acquisition

effort, forecast-based contracts can outperform linear compensation ones. Suen et al. (2018) described

how payouts can be employed to induce a socially-optimal behavior in a context of patients’ adhesion

to antibiotic therapy and showed the inefficiency of linear payouts. Li et al. (2020) also compared

linear and non-linear contracts and showed that the feature of fairness plays a role in the potential

outcomes realized, leading to a reduction in the benefits of non-linear contracts. Meanwhile, Long

and Nasiry (2020) discussed contexts where making wages transparent to employees were beneficial

to the firms. The incentive-design issue becomes more complicated with multitasking agents. As in

our work, Dai et al. (2021) considered a principal–agent framework where the agent can exercise two

types of tasks, operational and marketing. They characterized the optimal compensation plan, where

a bonus is paid when either all the inventory above a threshold is sold or the sales quantity meets an

inventory-dependent target. In this paper, we investigate linear and performance-based payouts used

as a tool to induce a reservation policy. Our analysis shows a novel context where performance-based

payouts are more efficient than linear ones.

The focus of the literature on blended queues with inbound and outbound customers is on per-

formance evaluation, staffing, and routing decisions, primarily for applications in call centers. By

analyzing various continuous time Markov chains, Deslauriers et al. (2007) demonstrated the value of a

threshold reservation policy. The authors showed that by reserving some agents for inbound customers,

the system can achieve a good trade-off between the rate of served outbound customers and the waiting
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time distribution of inbound customers. Later, in the case of identical service rates for inbound and

outbound customers, Gans and Zhou (2003) and Bhulai and Koole (2003) provided formal proofs that

this threshold type reservation policy is optimal for maximizing the rate of served outbound customers

with a service level constraint on the inbound customers’ waiting time. In this paper, we extend their

proofs to the case of unequal service rates and highly wait-averse customers. Pang and Perry (2014)

investigated a large call blending model and proposed a logarithmic safety staffing rule, combined with

a threshold reservation policy which manages simultaneously having agents’ utilization close to one

with idle agents almost always present. Extensions of the blended queue model with reservation are

investigated with time-dependent parameters (Legros et al., 2015), retrials (Phung-Duc et al., 2016),

reservation for arriving customers where delayed ones are viewed as outbound ones (Legros, 2017), or

in combination with outsourcing decisions in a sales environment (Legros et al., 2021). In the above

references, reservation is controlled by the system manager. Instead, this paper shows that reservation

can be the outcome of agents’ individual decisions motivated by payouts.

There is a large body of literature on queueing games models to capture customers’ joining decisions,

including Gavirneni and Kulkarni (2016), Dimitrakopoulos and Burnetas (2016), Cui and Veeraragha-

van (2016), and Hassin and Roet-Green (2017). As in this paper, this literature stream focuses on

the impact of customers acting strategically (i.e., deciding whether to join or to balk) when trying to

obtain the best trade-off between the value of a service and the cost of waiting. Hassin and Haviv

(2003)’s book explains the main principles of decision making from the customers’ perspectives. We

follow their approach based on the expected waiting time to build a simple utility model to determine

the customers’ joining parameters.

Customers’ joining problem can be viewed as an arrival rate optimization question. The symmet-

rical problem from the agents’ perspective is the service speed selection. Fewer references are found

in this area compared to the customers’ joining literature. Due to the mathematical complexity of

obtaining structural results, most analyses are made for systems with fewer than two servers. In the

single-server case, Zhan and Ward (2018) considered a queue with abandonment. They proved that

there exists a unique maximum of the agent’s utility defined as the product of the value of the service

speed multiplied by the agent’s utilization rate. In a principal–agent framework similar to ours, Baiman

et al. (2010) studied a single server queue with finite capacity where the principal controls the pay-

ment parameters and the buffer size while the agent decides for their service speed. They showed that

decreasing the buffer size may exacerbate or mitigate the agent’s moral hazard problem, depending on
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the level of blocking in the system. In the two-server case, Kalai et al. (1992) studied a queue with

competing exponential servers and Poisson arrivals. They found that in situations where the expected

waiting time is finite, there exists a unique symmetric strategic equilibrium. Christ and Avi-Itzhak

(2002) extended this model to a situation with a state-dependent Poisson arrival process, showing that

when the cost function is increasing and convex, there exists a unique pure symmetric Nash equilibrium

strategy. For the same model, Avi-Itzhak et al. (2006) showed that the unique Nash equilibrium is

generally strictly inferior to a globally optimal solution. Geng et al. (2015) also considered a queue

with two servers seeking fairness and proved the existence and uniqueness of the Nash equilibrium

for some routing policies. In the multi-server case, Gopalakrishnan et al. (2016) explored the effect

of routing rules when each agent can select the service rate which maximizes a trade-off between the

effort-cost and the proportion of idling time. They showed that with fair routing disciplines, all agents

adopt the same service speed. Zhan and Ward (2019) further investigated the multi-server case to find

a joint staffing, routing, and payment policy that leads to the optimal service-system performance. By

solving the centralized control problem under fluid scaling, they found that critically loaded, efficiency

driven, quality driven, and intentional idling regimes were economically optimal. In contrast to the

above references, the agents’ speed of service is exogenous in this paper, but the routing decisions are

decided by the agents.

Another field of research where agents partially exert control over their work activities is the

analysis of self-scheduling issues. Self-scheduling is in line with a growing stream of literature on the

management of on-demand service platforms (Cachon et al., 2017; Taylor, 2018; Bimpikis et al., 2019;

Braverman et al., 2019; Hu and Zhou, 2019; Özkan and Ward, 2020). In a queueing context, Ibrahim

(2018) studied the challenges of staffing and controlling queues with an uncertain number of servers

and impatient customers. The author showed how managers can use three forms of control from

their toolbox, namely, staffing, compensation, and announcements, to effectively control their system.

Gurvich et al. (2019) studied capacity management when workers self-schedule, when the firm controls

its capacity indirectly through compensation. They showed that to guarantee an adequate capacity,

the firm must offer a high compensation to their agents.

In contrast, the number of agents in our study is fixed, but their availability for either inbound

or outbound customers is self-determined. In this way, our analysis can be defined as a self-routing

issue in contrast to the aforementioned self-scheduling problems. We mention Lu et al. (2009) who also

investigated a self-routing problem in a principal–agent setting with a different focus than ours. The
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authors considered a queueing model with rework routing. They compared the incentives of different

allocation schemes and showed that self-routing of rework will never induce the first-best effort. In

the context of reservation strategy, we also make the conclusion that self-routing cannot induce the

first-best effort. Nevertheless, the authors showed that with a large capacity, dedicated routing and

cross routing can both achieve the first-best profit rate.

2 Problem formulation

We analyze a blended queue with a team of s homogeneous agents who can serve two types of customers,

namely, inbound and outbound. We refer to inbound customers as class-1 customers, and to outbound

ones as class-2 customers. Class-1 customers arrive at the system according to a Poisson process with

rate λ. If class-1 customers are not served immediately upon arrival, then they wait in an infinite

capacity queue before being served, under a first-come-first-served queue discipline. We assume that

there is an infinite supply of class-2 customers. The idea of this simplifying assumption is to consider

the number of accessible customers to contact as very large, such that an agent can find an available

customer to contact at any point in time. The service time of class-i customers (i = 1, 2) is assumed to

be exponentially distributed with rate µi and service preemption is not permitted. When the service

rates are equal (i.e., µ1 = µ2), we omit the index i, so the service rate is denoted by µ. In this case,

the offered load for class-1 customers, a, is defined by a = λ
µ .

Class-1 customers’ joining decisions is determined by the utility model of Naor (1969) defined as

the difference between a reward for service and a cost proportional to the waiting time. In this model

customers are risk-neutral, that is, they maximize the expected value of their utility. Specifically, the

customers’ reward from completed service is RS and the cost for staying in the queue is CW per unit of

waiting time. Moreover, the system is directly observable by customers or is made observable through

delay announcements. Thus, the expected waiting time at arrival can be estimated by customers. If the

expected waiting time of a given customer at arrival, called Customer n, is E(Wn), the expected utility

of joining the queue is then RS − CWE(Wn). Given that the utility of balking is zero, Customer n

joins the queue if RS − CWE(Wn) > 0. Due to the first-come-first-served discipline, the remaining

expected waiting time of a customer who joins the queue reduces over time. Thus, the expected utility

increases over time. Consequently, the joining decision is irrevocable, and reneging does not happen.

The system manager and the agents agree to a contract, which will govern their employment

relation. As in Baiman et al. (2010), we consider a compensation per agent and per time unit which
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consists of a fix wage F plus a piece-rate wage based on the realized rate of served class-1 and class-2

customers. Specifically, serving a class-i customer is rewarded with ri > 0 for i = 1, 2. The system

manager has discretion in setting r1, r2, and F . We call this compensation model the base model.

The resulting expected staffing cost, SC, is then given by SC = s(r1T1 + r2T2 + F ), where Ti is the

expected rate of served class-i customers by an agent for i = 1, 2.

We call by reservation policy the function which associates a decision action among idling, serving

a class-1 or serving a class-2 customer, to each agent and to each state of the system. For a given

reservation policy, termed Policy π, we associate an obedient effort per agent, Pπ, which corresponds to

the expected proportion of time spent on serving customers. We assume that the individual effort cost

ECπ of employing Policy π is proportional to Pπ: ECπ = e×Pπ with e > 0. With this assumption, we

state that the effort per time unit of work is identical when serving a class-1 or a class-2 customer. We

then define the agents’ expected utility of employing Policy π as the difference between the revenue

and the effort-cost: U = s(r1T1 + r2T2 + F − ECπ).

The agents have control over the reservation policy. The reservation policy is thus non-contractible

and subject to moral hazard. Furthermore, we assume that agents can observe the system state and

coordinate their decisions as a way to maximize their expected utility. As such, agents are risk-neutral.

For the reason of fairness, the longest-idle-first discipline is applied when selecting an agent for the

service of a class-1 customer. Combining this fair discipline, coordination and the assumption that

all agents are identical implies that each agent makes an identical decision in each identical situation.

Thus, in the long-run, each agent spends the same proportion of time on idling, serving class-1 or serving

class-2 customers. Finally, the agents are subject to a limited liability constraint which translates to the

idea that their realized revenue should be higher than or equal to their effort-cost, for any realization of

the revenue. As random variables, the realized rate of served class-1 and class-2 customers can be zero.

Consequently, the minimal revenue for an agent is F . So, the limited liability constraint translates into

F ≥ ECπ.

The system manager is risk-neutral and wants to minimize the long-run expected staffing cost,

SC, of inducing the agents to choose a reservation policy. Our analysis can then be interpreted

as a particular case of the principal–agent problem (Laffont and Martimort, 2009). The principal’s
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optimization problem of inducing Policy π can be expressed as

Minimize
r1,r2,F

s(r1T1 + r2T2 + F ), (1)

subject to
{
F ≥ ECπ, and,
Policy π ∈ arg max{r1T1 + r2T2 + F − ECπ},

We focus on the first-best and second-best solutions of Problem (1). The first-best solution solves the

principal’s optimization problem subject to all constraints except the incentive constraints, assuming

that the agents’ actions are contractible. The second-best solution solves the principal’s optimization

problem subject to all constraints.

There remains to specify the objective reservation policy for the system manager. As in Bhulai and

Koole (2003), the objective of the system manager is to induce a reservation policy which maximizes

the expected rate of served class-2 customers per agent, while maintaining the expected waiting time

of served class-1 customers E(W ) below a threshold level w:

{ Maximize T2,
subject to E(W ) ≤ w. (2)

Since the two classes of customers are served by the same team of agents, improving the performance

of one class of customers is detrimental to the other class of customers. Therefore, to maximize the

rate of served class-2 customers per agent, the expected waiting time of class-1 customers should be as

close as possible to the threshold level w. In this way, w can be viewed as an objective waiting time

for class-1 customers.

After solving Problem (1) in Section 3, we explore how the base model can be extended to provide

solutions of Problem (1) with lower staffing cost. In Section 4, we investigate the possibility to directly

pay for the idling time of an agent with r3 ≥ 0 monetary unit per unit of idling time. We also

consider the possibility to discriminate between delayed and non-delayed class-1 customers in the

agents’ payout by introducing the rewards rd1 and rnd1 per served delayed and non-delayed customer,

respectively. Finally, to account for service systems like call centers that are not observable by agents,

in Section 5 we study the solutions of Problem (1) in a setting where agents cannot observe the state

of the system. This, in turn, allows us to discuss the opportunity of revealing the system state to the

agents through idling delay announcements.

We conclude our model description with three remarks. First, customers and agents are assumed to

be aware of the system’s characteristics. This means that customers are able to estimate their expected
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waiting time upon arrival. This evaluation is possible if customers know the system in terms of service

speed and number of agents. The same stipulation holds for the agents. To decide on an appropriate

reservation strategy, the agents should be aware of the arrival rate of class-1 customers. This means

that our study is valid in a context involving experienced agents and regular customers, or when the

system can provide accurate evaluations of the performance measures through delay announcements

or idling time estimates. If the system is unknown by the agents or customers, their decisions may be

different from those presented in this paper (Debo and Veeraraghavan, 2014).

Second, we assume that customers’ utility is based on their expected waiting time. While this

choice is standard in the queueing literature, it may not correspond to human psychology regarding

the waiting time aversion. For instance, a percentile of the waiting time or the expected excess may also

be considered (Maister et al., 1984). Determining the most appropriate metric to capture customers’

perception of the wait is an ongoing research issue with an impact on scheduling and staffing decisions

(Koole, 2003). However, we decided not to pursue the analysis of the system through other performance

measures as they are unlikely to contribute significantly to our observations.

Third, we assume that each individual agent wants to maximize their individual utility in a context

where coordination between the agents is possible. Without coordination, the policy which maximizes

the agents’ utility is not necessarily the one that each agent would potentially adopt in an individual

revenue maximizing context. However, it is likely that this is not the case as demonstrated for service

rate optimization in Gopalakrishnan et al. (2016) due to the fair longest-idle-first discipline. Yet, this

outcome is very difficult to prove in our case as customers are delay-sensitive. Moreover, defining

a reservation policy for one agent independently from the policy of the other agents does not seem

feasible. Thus, we also decided not to pursue the analysis of a system without coordination.

We end this section with a table of the notations used throughout the article (Table 1).

3 On the efficiency of agents self-routing

In this section, we determine the efficiency of agents self-routing in the framework described in Section

2. First, in Section 3.1, we determine the customers’ equilibrium joining decisions. Next in Section

3.2, we characterize the agents’ reservation policy in the first- and second-best settings. This, in turn,

allows us to determine the optimal payout parameters in Section 3.3. Finally in Section 3.4, we provide

numerical illustrations of our analysis revealing the high cost of reservation when agents’ self-routing

is implemented.
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Table 1: Table of notations
System state

x Number of customers in the system (class-1 + class-2)
y Number of class-2 customers in service

Parameters of the queueing model
λ Class-1 customer arrival rate
µi Service rate of class-i customers for i = 1, 2
µ Service rate when µ1 = µ2
s Number of agents
a Offered load for class-1 customers when µ1 = µ2: a = λ

µ

Customers’ utility and decision parameters
RS Reward for being served
CW Cost per unit of waiting time
ny Joining threshold on the number of class-1 customers in the queue when y class-2

customers are in service (y = 0, 1, · · · , s)
n Joining threshold on the number of class-1 customers in the queue when µ1 = µ2

Agents’ reservation policy
Policy πfb Reservation policy in the first-best setting with parameters p and c̃
Policy πsb Reservation policy in the observable second-best setting with threshold level c̃
Policy πnosb Reservation policy in the non-observable second-best setting with threshold level q

c̃ Rank of Policy πsb when policies are sorted in ascending order of their rate of
served class-1 customers with c̃ = 0, 1, · · · , c (i.e., reservation level of Policy πsb)

c Maximal value for c̃ (i.e., when all agents are reserved for class-1 customers)
c Reservation threshold for the agents when µ1 = µ2 with c = 0, 1, · · · , s
p Probability to select reservation level c̃+ 1 at service completion for Policy πfb,

while 1− p is the probability to select reservation level c̃ with 0 ≤ p ≤ 1
q Probability to idle at service completion with Policy πnosb with 0 ≤ q ≤ 1

Agents’ utility, payments and effort
ri Reward per served class-i customer for i = 1, 2
r3 Reward per unit of idling time

rd1 , rnd1 Reward per served delayed and non-delayed class-1 customer, respectively
F Fix wage per agent
ECπ Effort cost per agent under Policy π (ECπ = ePπ)
e Cost per unit of non-idling time
Pπ Proportion of busy time for an agent under Policy π
SC Staffing cost in the base model
V C Variable part of the staffing cost in the base model
SC∗ Staffing cost in the model which discriminates delayed and non-delayed class-1

customers
U Agents’ utility

Performance measures
Ti Expected rate of served class-i customers per agent for i = 1, 2
P3 Proportion of idling time for an agent

T d1 , Tnd1 Expected rate of served delayed and non-delayed class-1 customers per agent,
respectively

E(W ) Expected waiting time of served class-1 customers
w Objective expected waiting time

Wy(z) Expected waiting time upon arrival when z customers are in the queue and y class-2
customers are in service

3.1 Customers’ equilibrium joining decisions

Bhulai and Koole (2003) proved that one property of the optimal reservation policy which solves

Problem (2) is the priority for class-1 customers. This property means that at service completion, an

available agent always chooses to start the service of a class-1 customer if there is at least one customer

waiting in the queue. In the first-best setting, this priority rule is contractible. In the second-best
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setting, we show in Section 3.3 that the payout parameters can be selected such that the priority for

class-1 customers can also be ensured. Thus assuming priority for class-1 customers, we determine the

equilibrium joining strategy of the customers. Theorem 1 proves that customers’ equilibrium joining

policy is of the threshold type and provides the threshold parameters. The notation dve defines the

first integer above a given real v.

Theorem 1. Customers’ equilibrium joining policy is a deterministic threshold policy with queue-length

threshold parameters ny for 0 ≤ y ≤ s, where y represents the number of class-2 customers in service.

Under this policy, an arriving customer joins the system if they observe ny − 1 or fewer customers in

the queue and balks if they observe ny customers or more with

ny =

⌈
W−1y

(
RS
CW

)⌉
, (3)

where Wy(z) =
y∑
j=1

Aj,y
1−pz+1

j

1−pj + (z + 1)t0, with py = (s−y)µ1
(s−y)µ1+yµ2 and ty = 1

(s−y)µ1+yµ2 for 0 ≤ y ≤ s,

A1,1 = t1 − t0, Aj,y = 1−py
pj−pyAj,y−1 for j < y, and Ay,y = ty −

(
t0 +

y−1∑
j=1

1−py
pj−pyAj,y−1

)
.

Next, Corollary 1 specifies the monotonicity properties of the joining thresholds. As expected,

if the service time of class-2 customers is longer than the one of class-1 customers, then a situation

with a high number of class-2 customers in service (i.e., a high value for y) may lead to long waiting

times for which customers react by selecting a low joining threshold. In the case of equal service rates,

the optimal joining policy results in a threshold policy with parameter n, which does not depend on

the number of class-2 customers in service. This threshold is also the maximum possible number of

customers in the queue.

Corollary 1. The following holds:

• The threshold ny is strictly increasing (respectively, strictly decreasing) in y if µ1 > µ2 (respec-

tively, if µ1 < µ2).

• When µ1 = µ2 = µ, customers’ equilibrium joining policy is a threshold policy with parameter

n =
⌈
sµRS
CW

⌉
. Under this policy, an arriving customer joins the system if they observe n − 1 or

fewer customers in the queue and balks if they observe n customers or more.

3.2 Agents’ reservation policy

We now determine the optimal reservation policy for the agents in the first- and second-best settings.

13



First-best setting. In the first-best setting, the agents’ actions are contractible. Therefore, the

objective reservation policy is the one that solves Problem (2) under external control. In the case

µ1 = µ2, Bhulai and Koole (2003) proved that this policy, termed Policy πfb, (i) gives priority to

class-1 customers, (ii) provides a threshold type reservation for class-1 customers, and (iii) randomizes

in between adjacent deterministic threshold policies. Properties (i), (ii) and (iii) determine the possible

actions of an agent who just completed service. Property (i) states that if there is at least one class-1

customer waiting in the queue, then the first customer in line in the queue directly starts service.

Property (ii) determines the decision actions when the queue is empty through a reservation threshold

c for c = 0, 1, · · · , s. Specifically, if the number of idle agents (excluding the one who just completed

service) is at least c, then the newly available agent initiates the service of a class-2 customer, otherwise

she remains idle. This means that there are c agents that are reserved for class-1 customers. Hence,

there are at least s−c agents working at any time. Property (iii) is defined by a randomizing parameter p

for 0 ≤ p ≤ 1 such that at service completion either the deterministic reservation threshold c is selected

with probability 1− p or the reservation threshold c+ 1 is selected with probability p.

In the case µ1 6= µ2, there is no proof of the form of the optimal policy in the queueing literature.

Yet, numerical investigations from Markov decision process analyses indicate that Policy πfb is also

optimal when µ1 6= µ2 with the particularity that the reservation threshold should depend on the

number of class-1 and class-2 customers in service (Bhulai and Koole, 2003). Therefore, we assume that

Policy πfb with the reservation threshold possibly being state-dependent, is the objective reservation

policy in the first-best setting. Due to the competition between class-1 and class-2 customers for the

same resources (the agents), if one policy, termed Policy π, provides a higher rate of served class-1

customers than another one, termed Policy π′, then the rate of served class-2 customers is lower with

Policy π than with Policy π′. Therefore, we can sort the admissible deterministic reservation policies by

the resulting rate of served class-1 and class-2 customers. We write that Policy π has more reservation

than Policy π′ if the rate of served class-1 customers (respectively, the rate of served class-2 customers)

with Policy π is higher (respectively, lower) than the one with Policy π′. We call by level of reservation,

the rank of each admissible policy when admissible policies are sorted in ascending order of their rate

of served class-1 customers. The level of reservation is denoted by c̃, where c̃ is an integer such that

0 ≤ c̃ ≤ c. With c̃ = 0, agents never idle, and with c̃ = c, all agents are reserved for class-1 customers.

Note that c+ 1 is the number of admissible deterministic policies. In the case µ1 = µ2, we have c̃ = c

and c = s.
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In the case µ1 6= µ2, Policy πfb is then defined by the parameters c̃ and p, where c̃ is the deterministic

reservation level and p is the randomizing parameter. As in the case µ1 = µ2, at each service completion,

either a policy with reservation level c̃+1 is implemented with probability p or a policy with reservation

level c̃ is implemented with probability 1− p. With this definition, the sum c̃+ p can be viewed as the

level of reservation of Policy πfb.

Second-best setting. We now determine how agents select their reservation policy when they make

decisions in a utility maximizer perspective. To derive the agents’ reservation policy, we develop an

iterative Markov decision process approach. This approach applies for our model as the queueing

model under consideration can be represented by a Markov chain and the maximal event rate, λ +

smax(µ1, µ2), is bounded. Therefore, uniformization is possible. Consequently, we assume, without

loss of generality, that λ + smax(µ1, µ2) = 1, such that the transition rates in the continuous time

Markov process can be viewed as transition probabilities in the equivalent discrete time one (Koole,

2007). The state of the system is defined by the couple (x, y), where x is the number of customers

present (class-1+class-2) and y is the number of class-2 customers in service. We assume that the

parameters r1, r2, and F are chosen such that class-1 customers have service priority. We can then

define the value function, Vk(x, y), over k steps in order to capture the agents’ utility. We choose

V0(x, y) = 0 and for k ≥ 0,

Vk+1(x, y) = sF + λ

(
1x−s<ny

(
Ik(x+ 1, y) + r1 −

e

µ1

)
+ 1x−s=nyIk(x, y)

)
(4)

+min(s− y, x− y)µ1Ik(x− 1, y) + yµ2Ik(x− 1, y − 1)

+ (1− λ−min(s− y, x− y)µ1 − yµ2)Ik(x, y),

with x ≥ 0, and 0 ≤ y ≤ min(x, s), where Ik(x, y) = Vk(x, y), if x ≥ s and

Ik(x, y) = max
(
Vk(x, y), Vk(x+ 1, y + 1) + r2 − e

µ2

)
, if x < s. The operator Ik controls the decision

to initiate a class-2 service. We obtain the long-run average optimal actions by applying the value

iteration technique introduced by Bellman (1957) and Howard (1960), by recursive evaluation of Vk

using (4) for k ≥ 0. As k tends to infinity, the optimal policy converges to the unique average optimal

policy, which maximizes the agents’ utility (i.e., Policy πsb) and the difference Vk+1(x, y) − Vk(x, y)

converges to the long-run optimal utility for the agents (Puterman, 1994).

From various numerical experiments, we observe that Policy πsb is a deterministic state-dependent

threshold one with threshold level c̃ as defined in the first-best setting. This means that self-routing
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cannot induce the first-best effort as Policy πsb differs from Policy πfb by the impossibility to randomize

in between adjacent threshold levels. We partially prove the form of the optimal reservation policy in

Theorem 2. Specifically, we prove that Policy πsb is deterministic. Moreover, we prove its threshold

form when customers are highly wait-averse, translated by the condition RSsmax(µ1,µ2)
CW

< 1. This

condition translates into customers joining the system only if at least one agent is available. It means

that Theorem 2 proves the threshold form of the reservation policy in a loss system. This represents a

novel contribution in the analysis of blended queues as the case µ1 6= µ2 has never been tackled.

Theorem 2. The optimal policy for the agents is a deterministic stationary policy. For RSsmax(µ1,µ2)
CW

<

1, the optimal policy for the agents is a state-dependent reservation threshold policy, defined by the

function y = c(x) such that if the system is in state (x, y) with x < s and y < s−c(x), then s−c(x)−y

class-2 services should be initiated.

When µ1 = µ2, Theorem 2 can easily be proven by adjusting the proof of Theorem 3.2 in Bhulai

and Koole (2003). The reservation policy then becomes a threshold policy with reservation threshold

c for c = 0, 1, · · · , s as defined in the first-best setting.

3.3 Optimal payout parameters

We now evaluate how the payout parameters should be selected in the first- and second-best set-

tings to solve Problem (1). First, we provide conditions for the priority for class-1 customers in

the second-best setting. Using the definition of ECπ, the utility of an agent can be rewritten as(
r1 −

e

µ1

)
T1 +

(
r2 −

e

µ2

)
T2 + F . So, if r1 < e

µ1
, then the effort for serving a class-1 customer is

not compensated by the reward r1. In this case, an agent would prefer to idle than to serve a class-1

customer. The system manager should instead select r1 such that r1 ≥ e
µ1

in order to create a pref-

erence for serving class-1 customers instead of idling. Next, having r2µ2 > r1µ1 creates an incentive

for agents to serve only class-2 customers as these customers are always available for service. The

system manager should instead select r1 such that r1µ1 ≥ r2µ2 in order to induce a priority for class-1

customers over class-2 customers.

After ordering the admissible policies in the second-best setting according to their reservation level,

we observe that the maximum of the agents’ utility in c̃ is unique. Having a unique maximum is

important as it determines how agents may choose their reservation policy. If there was more than

one local maximum, agents could choose a local maximum that is not necessarily the global one. We

also observe that the level of reservation increases with r1. This second observation is intuitive and
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represents a necessary step for optimizing the reward r1 in Theorem 4. These results are proven in

Theorem 3 in the case µ1 = µ2.

Theorem 3. In the case µ1 = µ2, the agents’ utility has a unique maximum in the reservation thresh-

old c. Moreover, the optimal reservation threshold c increases with r1.

We now provide the solutions of Problem (1) for the system manager in the first- and in the

second-best settings in Theorem 4. This theorem is proven assuming that Theorem 3 is also valid

when µ1 6= µ2.

Theorem 4. The optimal compensation parameters in the first-best and in the second-best settings to

achieve Policy πfb and Policy πsb with reservation level c̃, respectively, are as follows:

• First-best setting: r1 = r2 = 0, and F = ECπfb.

• Second-best setting: F = ECπsb, and

– If agents should not be reserved for class-1 customers (i.e., if c̃ = 0), then r1 = e
µ1

and

r2 =
e
µ2
.

– For non-extreme reservation policies (i.e., if 0 < c̃ < c), r1 = e
µ2

T2(c̃−1)−T2(c̃)
T1(c̃)−T1(c̃−1) and r2 = e

µ2
,

where Ti(c̃) and Ti(c̃−1) are the rates of served class-i customers per agent with reservation

level c̃ and c̃− 1, respectively, for i = 1, 2.

– If all agents should be reserved for class-1 customers (i.e., if c̃ = c), then r1 = e
µ1

and

r2 = 0.

From Theorem 4, we deduce the expression of the optimal staffing cost, SCc̃:

SC0 =
2es

µ1
T1(0) +

2es

µ2
T2(0) for c̃ = 0, (5)

SCc̃ =

(
es

µ2

T2(c̃− 1)− T2(c̃)
T1(c̃)− T1(c̃− 1)

+
es

µ1

)
T1(c̃) +

2es

µ2
T2(c̃) for 0 < c̃ < c, and

SCc =
2es

µ1
T1(c) for c̃ = c.

3.4 Numerical illustration

We now investigate the impact of achieving a service level objective w for class-1 customers. In

Proposition 1, we prove that the variable part of the staffing cost is decreasing and convex in w for

E(W )s−1 ≤ w ≤ E(W )0 when µ1 = µ2, where E(W )c is the expected waiting time associated with
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(a) Rate of served class-2 customers per agent with µ2 = 1
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(b) Staffing cost with µ2 = 1
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(c) Rate of served class-2 customers per agent with µ2 =
0.8
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(d) Staffing cost with µ2 = 0.8

Figure 1: Numerical illustrations (λ = 9, s = 10, µ1 = 1, e = 1, RS = 5, CW = 3)

the reservation threshold c for c = 0, 1, · · · , s. Numerically, we observe that the same result holds for

the overall staffing cost when µ1 6= µ2. However, it is difficult to prove this result as the effort cost

is neither convex nor concave in the reservation threshold c. Note also that the decreasing property

does not hold between reservation thresholds s and s− 1 as the principal does not need to provide an

incentive for serving class-2 customers when all agents should be reserved for class-1 customers.

Proposition 1. The variable part of the staffing cost is decreasing and convex in w in the second-best

setting when µ1 = µ2 for E(W )s−1 ≤ w ≤ E(W )0.

In Figure 1 we provide a numerical illustration for the solutions of Problems (1) and (2) in the first-

and second-best settings as functions of the service level objective for the expected waiting time of

served class-1 customers w. Figures 1(a) and 1(c) present the optimal rate of served class-2 customers

per agent (i.e., solution of Problem (2)) and Figures 1(b) and 1(d) provide the corresponding staffing

cost (i.e., solution of Problem (1)).

Policy πsb does not allow for randomization. This explains why the staffing cost and the rate of

served class-2 customers are step functions. Each step corresponds to a change in the reservation
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threshold. On the contrary, Policy πfb allows for randomizing in between adjacent thresholds in order

to saturate the constraint on the expected waiting time (i.e., E(W ) = w under Policy πfb). This

means that Policy πfb behaves as if the reservation threshold was a real whereas Policy πsb is restricted

to a finite set of integer reservation thresholds. Consequently, in situations where we cannot obtain

E(W ) = w with an integer reservation threshold, Policy πfb provides a higher rate of served class-2

customers than Policy πsb. This is an illustration that self-routing cannot induce the first-best effort.

The difference between the two policies can be significant in small systems, where the number of

achievable deterministic reservation policies is low. Having different service rates, as in Figures 1(c)

and 1(d), allows for a wider range of admissible reservation policies. However, the benefits of having

more admissible policies are limited. We observe that the admissible policies can be divided into s+1

subsets where each subset contains one reservation policy of the case µ1 = µ2. Within one subset of

policies, the solutions of Problems (1) and (2) do not differ much. This explains why the staffing cost

and the rate of served class-2 customers are close to be step functions also when µ1 6= µ2. This means

that the fixed reservation policy –which is optimal in the case µ1 = µ2– is close to optimal in the case

µ1 6= µ2.

Second, we observe that the staffing cost reaches extremely high values in the second-best setting

as compared to the first-best one when the objective waiting time for class-1 customers is low. This

observation is supported by the convexity property of the variable part of the staffing cost proven in

Proposition 1. For the system manager, this means that above a certain reservation threshold, further

increasing reservation as a means to reduce the expected waiting time is very costly for only a limited

improvement. Finally, as shown in Figure 1(d), having a slow speed of service for class-2 customers

reduces the attractiveness of these customers for the agents that then reduces the need to pay a high

price for the service of class-1 customers. The impact of the other system parameters are intuitive and

are confirmed by other numerical investigations not presented here. For instance, it is known that the

expected waiting time increases with the arrival rate of class-1 customers and reduces with the system

size. Therefore, low traffic or large systems only require a low reservation level to achieve a sufficiently

low expected waiting time, resulting in a low staffing cost.

Our analysis justifies why most call centers and service systems modeled by blended queues do not

implement agents’ self-routing. Although more satisfying at the human resource level, linear incentives

result in too high an increase in the agents’ pay to achieve a certain service level as compared to

automated routing. In the next section, we explore extensions of the base model that could possibly
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reduce the agents’ pay.

4 Improvement of the incentive model

In the base model, agents face the dilemma to either gain a direct reward r2 for serving a class-2

customer or a postponed one r1 for a more profitable service. If the principal wants an agent to take

the latter alternative, then the parameter r1 should be set sufficiently high to compensate the zero

profit idling period before receiving a class-1 customer. The analysis in the previous section shows

that r1 reaches a very high value when the objective waiting time is low. This reveals the question of

redefining the payment structure as a means to reduce the staffing cost. We propose two extensions

of the base model. In the first one, we investigate the possibility of directly paying for idling. In the

second one, we propose to discriminate between the delayed and non-delayed class-1 customers.

Should we pay for idling? We extend the base model by including a reward for idling of r3 ≥ 0

monetary unit per unit of idling time. The idea is that having r3 > 0 could create an additional

motivation for idling, which would allow the principal to reduce the value of r1 to achieve Policy πsb.

However, we prove in Proposition 2 that this does not reduce the staffing cost. In this proposition, we

prove that paying for idling would force the system manager to pay a higher price for serving class-1

and class-2 customers, which consequently increases the staffing cost as compared to the case with

r3 = 0. Therefore, paying for idling should be excluded.

Proposition 2. The staffing cost cannot be reduced in the second-best setting by including a reward

for idling. In other words, r3 = 0 is the optimal compensation for idling.

Should we discriminate between delayed and non-delayed class-1 customers? Recall that

Policy πsb has two properties: priority for class-1 customers and threshold reservation policy. Reser-

vation is stronger than priority. However, not all class-1 customers benefit from a reserved agent.

Customers who benefit from a reserved agent are those who do not wait. Delayed class-1 customers

only benefit from the priority over class-2 customers. Therefore, we propose discriminating between

delayed and non-delayed customers in the reward structure as non-delayed customers benefit from a

stronger property of Policy πsb than delayed ones. We introduce the reward parameters rd1 and rnd1

to reward the service of a delayed and a non-delayed class-1 customer, respectively. This makes this

compensation model non-linear as the service of customers of the same class is rewarded as a function
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of the service quality provided. In Proposition 3, we provide the optimal values for rd1 , rnd1 , and r2 in

the second-best setting. We denote by Tnd1 (c̃) and T d1 (c̃) the rates of served non-delayed and delayed

class-1 customers, respectively, under Policy πsb at reservation level c̃.

Proposition 3. The optimal compensation parameters to achieve Policy πsb in the second-best setting

with reservation level c̃ are given by F = ECπsb and:

• If agents should not be reserved for class-1 customers (i.e., if c̃ = 0), then rnd1 = rd1 = e
µ1

and

r2 =
e
µ2
.

• For non-extreme reservation policies (i.e., if 0 < c̃ < c), rnd1 = e
µ2

T2(c̃−1)−T2(c̃)
Tnd
1 (c̃)−Tnd

1 (c̃−1)+
e
µ1

T d
1 (c̃−1)−T d

1 (c̃)

Tnd
1 (c̃)−Tnd

1 (c̃−1) ,

rd1 = e
µ1

and r2 = e
µ2
.

• If all agents should be reserved for class-1 customers (i.e., if c̃ = c), then rnd1 = rd1 = e
µ1

and

r2 = 0.

From Proposition 3, we express the optimal staffing cost SC∗c̃ for this compensation model as

follows:

SC∗0 =
2es

µ1
T1(0) +

2es

µ2
T2(0) for c̃ = 0, (6)

SC∗c̃ =

(
es

µ2

T2(c̃− 1)− T2(c̃)
Tnd1 (c̃)− Tnd1 (c̃− 1)

+
es

µ1

T d1 (c̃− 1)− T d1 (c̃)
Tnd1 (c̃)− Tnd1 (c̃− 1)

+
es

µ1

)
Tnd1 (c̃) +

2es

µ1
T d1 (c̃) +

2es

µ2
T2(c̃)

for 0 < c̃ < c, and

SC∗c =
2es

µ1
T1(c) for c̃ = c.

In Corollary 2, we prove that by discriminating between delayed and non-delayed class-1 customers in

the incentive structure, we reduce the staffing cost except in the extreme cases c̃ = 0 and c̃ = c. The

proof of Corollary 2 follows from the expressions of SCc̃ and SC∗c̃ .

Corollary 2. Discriminating between delayed and non-delayed class-1 customers in the incentive struc-

ture reduces the staffing cost except when c̃ = 0 or c̃ = c. Specifically,

SCc̃ − SC∗c̃ = 0 for c̃ = 0 and c̃ = c, and

SCc̃ − SC∗c̃ = s
Tnd1 (c̃)T d1 (c̃− 1) + Tnd1 (c̃− 1)T d1 (c̃)

Tnd1 (c̃)− Tnd1 (c̃− 1)

(
e

µ2

T2(c̃− 1)− T2(c̃)
T1(c)− T1(c− 1)

− e

µ1

)
> 0 for 0 < c̃ < c.

In Figure 2(a), we present the difference in staffing cost between the base model and the non-linear

one studied in this section. This illustrates the result of Corollary 2. We observe that the difference
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(a) Difference in staffing cost between the two compensa-
tion models (SCc̃ − SC∗

c̃ )
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(b) Decomposition of the staffing cost

Figure 2: Numerical illustration (λ = 9, s = 10, µ1 = µ2 = 1, e = 1, RS = 5, CW = 3)

between the two contracts is high, especially when w is low. This suggests that delay-dependent

rewards should be implemented instead of a non-discriminating pay-per-task contract. In Figure 2(b),

we delineate the staffing cost of the three components related to the compensation of delayed class-1,

non-delayed class-1, and class-2 customers. As expected, the parts related to class-2 and delayed class-

1 customers increase with the objective expected waiting time for class-1 customers while the part

related to non-delayed customers reduces. Moreover, we observe that the overall staffing cost is close

to be a constant function of w. This is another difference from the base model (Figure 1(b)). When

w increases, the overall rate of served customers increases as agents spend less time idling. This may

increase the staffing cost. Yet, the rate of the most rewarded services reduces, which tends to reduce

the staffing cost. These two competing phenomena result in a close to constant staffing cost in the

model with non-linear rewards. With the base model, the staffing cost was mainly driven by the high

payment due to served class-1 customers. This further argues in favor of the non-linear model. With

a close to constant staffing cost, the decision to select a given value for w becomes mainly driven by

the service quality that the system manager wants to provide to class-1 and to class-2 customers and

less by the cost it could induce.

5 Analysis when agents cannot observe the system state

In some systems, like call centers, agents do not know the state of the system. Therefore, their decisions

cannot be made on the number of available agents as was the case in the analysis in Section 3. To

account for such systems, we analyze Problem (1) with the base model in a context where agents are

blind to the system state. Nevertheless, call centers can easily be made observable to the agents by
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announcing their idling delay before receiving a class-1 customer. Thus, at the end of the section, we

compare the solutions of Problem (1) in the observable and non-observable cases for the agents in order

to discuss the opportunity to announce idling delays.

Remark: As for agents, call centers’ state is non-observable to customers but can be made ob-

servable through delay announcements. The question of announcing delays to customers has received

a lot of attention in the field of call centers (Guo and Zipkin, 2007; Allon and Bassamboo, 2011; Yu

et al., 2017, 2018). We also investigated this question in our context. The results of this analysis

were expected from the literature on delay announcement. In particular, in terms of staffing cost, we

observe that announcing delays to customers is beneficial in congested situations whereas in a light

traffic context, it is better to keep the system non-observable. Thus, we decided to not present the

results of this analysis.

The optimal policy in the first-best setting is unchanged as the system manager knows the system

state. Thus, we only focus on the second-best policy, termed Policy πnosb . As in the observable case,

the priority for class-1 customers is ensured by the inequalities r1 ≥ e
µ1

and r1µ1 ≥ r2µ2. Customers’

joining decisions are also unchanged due to the priority for class-1 customers. When agents do not

know the system state, the only possible reservation policy is a randomizing policy with parameter

q. At service completion, an agent decides to idle with probability q or to initiate a class-2 service

with probability 1− q for 0 ≤ q ≤ 1. Thus, the parameter q translates to a level of reservation: when

q = 100% all agents are reserved for class-1 customers, whereas when q = 0% agents are never idle.

In Proposition 4, we extend the result of Theorem 3 in the non-observable case by considering the

closed-form expressions of the performance measures in the reservation parameter q. In particular, we

prove a novel property of the Erlang loss-function defined as γ(q) =
s−1∑
x=0

s!( q
a)

s−x

x! . That is

qγ(q)
∂2γ(q)

∂q2
− 2q

(
∂γ(q)

∂q

)2

+ 2γ(q)
∂γ(q)

∂q
≤ 0. (7)

Proposition 4. In the case µ1 = µ2, the agents’ utility has a unique maximum in the reservation

level, q. Moreover, the optimal reservation level q increases with r1.

Assuming that Proposition 4 is also valid in the case µ1 6= µ2, we deduce the optimal incentive

parameters r1 and r2 in the second-best setting in Proposition 5 from which the staffing cost can be

deduced. The proof follows similar arguments as Theorem 4.

Proposition 5. The optimal compensation parameters in the non-observable second-best setting to
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achieve Policy πnosb with a reservation level q are F = ECπno
sb
, and

• If agents should not be reserved for class-1 customers (i.e., if q = 0), then r1 = e
µ1

and r2 = e
µ2
.

• For non-extreme reservation policies (i.e., if 0 < q < 1), then r1 = − e
µ2

∂T2(q)
∂q

∂T1(q)
∂q

and r2 = e
µ2
, where

Ti(q) is the rate of served class-i customers at reservation level q for i = 1, 2.

• If all agents should be reserved for class-1 customers (i.e., if q = 1), then r1 = e
µ1

and r2 = 0.

Comparison with the observable case. In Figure 3, we compare the solutions in the observable

and non-observable cases as functions of the expected waiting time objective, in terms of rate of

served class-2 customers per agent (Figure 3(a)) and staffing cost (Figure 3(b)). From Figure 3(a), we
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(a) Rate of served class-2 customers per agent
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(b) Staffing cost

Figure 3: Comparison between the observable and the non-observable case (λ = 9, s = 10, µ1 = µ2 = 1,
e = 1, RS = 5, CW = 3)

observe that the rate of served class-2 customers is higher in the observable case for most values of the

objective waiting time. This is one positive outcome of making state-dependent decisions over blind

ones. However, in the observable second-best setting, agents do not randomize in between adjacent

thresholds. Therefore, to satisfy the constraint on the expected waiting time, agents tend to employ

a higher reservation threshold than needed. This reduces the rate of served class-2 customers and

creates situations where the non-observable model achieves a higher value for T2 than the observable

one. These cases occur more often when the objective expected waiting time is high.

From Figure 3(b), we remark that when the objective waiting time is low, the staffing cost in

the non-observable case is significantly lower than the one of the observable case. In the observable

case, agents are aware of the expected duration of the idling time before serving a class-1 customer.

Specifically, if an agent becomes available and z other agents are already idling, then the expected

duration before receiving a class-1 customer is z+1
λ . The decision variable z is unknown in the non-
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observable case. Hence, at service completion, an agent makes an idling decision based on the mean

idling duration. When the objective expected waiting time is low, idling times are long and the

probability to significantly exceed the mean idling duration is high. As agents only make decisions based

on mean values (they are risk-neutral), having a non-observable system allows the system manager to

not pay for the longest idling times. This renders the staffing cost lower in the non-observable case as

compared to the observable one when w is low. The opposite effect occurs when the objective expected

waiting time is high. Uninformed agents tend to overestimate the idling time duration, leading the

system manager to overpay for it.

Deciding on announcing delays to agents should be a function of the waiting time objective for

class-1 customers. When the objective waiting time for class-1 customers is low, announcing delays

results in an increased rate of served class-2 customers (i.e., a better solution of Problem (2)). Yet,

the staffing cost may reach an extremely high level. This disfavors announcing delays. With a higher

objective waiting time for class-1 customers, announcing delays tends to reduce the staffing cost but

sometimes leads to a lower rate of served class-2 customers.

6 Conclusion

This paper investigates a multi-agent blended queue with inbound and outbound customers where

inbound customers are delay-sensitive. Available agents know the system state and are in control of

deciding whether to serve an inbound customer, an outbound one, or to remain idle. The system

manager wants to provide a good trade-off between the expected waiting time of inbound customers

and the rate of served outbound ones at minimal cost. To this end, they decide the agents’ payouts.

Agents are rewarded by a fix wage and piece rate compensation dependent on the nature of the served

customer (inbound or outbound). The agents’ possibility to self-route in this context is a principal–

agent problem with moral hazard where the agents’ effort consists of selecting their reservation policy.

Methodologically, our analysis relies on the monotonicity properties of the performance measures and

on Markov decision processes. We show that the optimal routing policy for the agents is a deterministic

threshold policy in the second-best setting. From this result, we express the compensation parameters

that minimize the staffing cost in the first- and second-best settings.

Agents self-routing with linear payouts results in high staffing costs, especially when the objective

waiting time is low. Therefore, our study justifies why most call centers prefer the keep the system

manager in charge of routing issues. Nevertheless, the negative consequences of automated routing on
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motivation or absenteeism may lead to more companies considering the switch to self-routing. We then

investigated extensions of the initial payment model. We found that directly paying for idling should

be excluded as it cannot reduce the staffing cost. On the contrary, discriminating between delayed and

non-delayed customers in the reward structure has a high potential to reduce the agents’ payment.

We finally investigated the case where agents cannot observe the system state as in call centers. Our

analysis shows that not revealing the system state to the agents through delay announcements can

significantly reduce staffing costs when the objective waiting time for inbound customers is low.

The study limitations open up several avenues for future research. It is important to determine

how our conclusions would be modified considering other optimization problems or other disciplines of

service. The model could be made more complex by including abandonment, non-exponential distri-

bution, and loss-aversion. While we implicitly assumed a monopolistic system, it would be interesting

to investigate the impact of competition on the agents’ decisions. Finally, other ways of providing

revenue to the agents could be investigated. In particular, it would be useful to determine the effect

of heterogeneous rewards on the agents’ behavior.
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