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As freight deliveries in cities increase due to retail fragmentation and e-commerce, parking is becoming

a more and more relevant part of transportation. In fact, many freight vehicles in cities spend more time

parked than they are moving. Moreover, part of the public parking space is shared with passenger vehicles,

especially cars. Both arrival processes and parking and delivery processes are stochastic in nature. In order

to develop a framework for analysis, we propose a queueing model for an urban parking system consisting

of delivery bays and general on-street parking spaces. Freight vehicles may park both in the dedicated bays

and in general on-street parking, while passenger vehicles only make use of general on-street parking. Our

model allows us to create parsimonious insights into the behavior of a delivery bay parking stretch as part of

a limited length of curbside. We are able to find explicit expressions for the relevant performance measures,

and formally prove a number of monotonicity results. We further conduct a series of numerical experiments

to show more intricate properties that cannot be shown analytically. The model helps us shed light onto

the effects of allocating scarce urban curb space to dedicated unloading bays at the expense of general on-

street parking. In particular, we show that allocating more space to dedicated delivery bays can also make

passenger cars better off.
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1. Introduction

With the growth of cities and their population density, freight deliveries to cities are growing in

volume and number while available space is more and more limited. Research on urban logistics

has been growing in attention in the past decades. Recent reviews provide overviews and out-

looks for challenging transportation problems in urban logistics (Malik et al. 2017, Savelsbergh and

Van Woensel 2016, Taniguchi and Thompson 2018, Crainic, Ricciardi, and Storchi 2009). While

most of this research addresses challenging problems to improve the actual movement of vehicles,

recent empirical studies (e.g., Vieira and Fransoo 2015, Goodchild and Ivanov 2017) show that urban

delivery vehicles are parked for unloading during a considerable part of the time, in some cases more

than they are riding. This is particularly the case in high-density urban environments where the

retail landscape (for B2B deliveries) is very dense or the consumer density (for B2C deliveries) is

very high. For instance, in a field study on deliveries to nanostores (traditional convenience stores)

in Latin America, Fransoo, Cedillo-Campos, and Gamez-Perez (2020) show that delivery vehicles

were parked about 80% of the total time spent on the route; hence, only about 20% is spent with

the vehicle in motion. Similarly high numbers have been shown in other studies in North America

(Jaller, Holguín-Veras, and Hodge 2013, Goodchild and Ivanov 2017). In parcel delivery (mostly

due to online commerce), vehicles in Amsterdam have been reported to be parked for about 70% of

total time spent on their route. Since it is very difficult to find parking space, vehicles are searching

for parking space extensively (Dowling, Ratliff, and Zhang 2019, Shoup 2006, Cassady and Kobza

1998, Dalla Chiara and Goodchild 2020) and may be forced to park illegally causing difficulties to

other traffic (Gao and Ozbay 2016, Kladeftiras and Antoniou 2013). In a field experiment, Fransoo,

Cedillo-Campos, and Gamez-Perez (2020) show that by providing more delivery bay space, efficiency

improvements in deliveries of up to 40% could be reached. Since this efficiency gain could be used

to include more cargo in the vehicle (urban delivery vehicles are often not filled to capacity), this

could potentially reduce the number of vehicles needed and increase the number of deliveries per

vehicle.

However, to create more dedicated space for delivery by dedicating curbside space to delivery

bays, these dedicated bays take away space for general on-street parking (Nourinejad et al. 2014).

Such measures generally are not very popular with car drivers and others (such as public transport

and taxis) that make use of scarce curbside resources. The alternative is also not very attractive:

if freight vehicles cannot find an available delivery bay, they either occupy the general-purpose

parking space or park illegally. This behavior may be at the detriment to overall space utilization,

as in such cases the handling time may be longer (for instance due to the fact that the space at

the general on-street parking might be too small for (un)loading, or other vehicles interfere in the
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delivery operation). Obviously, there may also be an increased safety risk for drivers and helpers

taking care of the freight delivery.

Such curbside parking stretches that have both delivery bays and general-purpose street parking

spaces with stochastic arrival and service times are complex systems to model. Earlier studies

(Caliskan et al. 2007, Dalla Chiara and Cheah 2017, Dowling, Ratliff, and Zhang 2019, Larson and

Sasanuma 2007, Wigan and Broughton 1980, Xiao, Lou, and Frisby 2018) have investigated either

freight delivery parking systems or on-street passenger vehicle (car) parking systems. However, as

described above, in actual curbside parking stretches delivery vehicles make use of both delivery

bays and of general on-street parking spaces. Moreover, also passenger vehicles make use of the

general on-street parking spaces. Hence, a complex parking system emerges where (1) limited space

is split between two types of parking spaces, (2) randomly arriving delivery vehicles that find delivery

bays occupied will use general on-street parking spaces to make their deliveries, and (3) passenger

vehicles make use of general on-street parking spaces. This results in a complex parking system with

multiple related arrival and service processes.

In this paper, we develop such a model. The model helps us shed light onto the effects of allocating

scarce urban curb space to dedicated unloading bays at the expense of general on-street parking.

We consider an abstract section of a street with a given number of parking spaces, of which we

allocate a certain share to delivery bays (‘Bay parking’), with the remainder available for general

on-street parking (‘Street parking’). Using a queueing approach, we model both the bay parking

stretch and the street parking stretch as a set of parallel servers with stochastic service times, and

model the arrival process of new vehicles as a stochastic process. In our model, delivery vehicles

have a preference for bay parking; if bay parking is not available, they will make use of street

parking spaces. If these are also not available, they will leave our system. The latter in practice

most likely implies that the delivery vehicle will park illegally (such as double parking or parking on

the sidewalk); hence the share of delivery vehicles being blocked in our system provides an estimate

of the share of delivery vehicles parking illegally. Our system also faces a stochastic arrival process

of passenger vehicles that intend to park at street parking spaces, and leave our system if no place

is available. We believe we are the first to model such a curbside parking system, which is very

common in many cities. Our modeling approach can be the basis for much-needed analysis of the

usage of scarce public space for delivery in dense cities.

From a queueing perspective, the model studied in this paper is the so-called N -design. The

N -design is a canonical model that is complex to analyze since two teams of servers are considered

and the overflow depends on the congestion in one of the queues. This creates a correlation between

the congestion in the two parking stretches and hence a two-dimensional problem. Nevertheless,

by adjusting results from the Erlang loss system (Ross 2014) to our model, we are able to derive
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numerically the relevant performance measures in a simple manner. Moreover, we formally prove

some monotonicity results of the performance measures in the number of dedicated bay parking

space. To this end, as most of the performance measures cannot be obtained in closed-form, we

develop a two-dimensional iterative Markov decision process approach. Assuming that the total

number of parking space is fixed, this approach allows us to prove that the bay blocking probability,

the freight blocking probability, and the total utilization rate are decreasing in the number of

dedicated bay parking space. This result provides an additional step in the analysis of the N -design

which can contribute to the understanding of other systems modeled by this queueing architecture.

These monotonicity results support our numerical observations and may be employed for deciding

on the number of bay parking space.

Our model allows us to create parsimonious insights into the behavior of a delivery bay parking

stretch as part of a limited stretch of curbside. We further conduct a series of numerical experiments

to show more intricate properties that cannot be shown analytically. In general, and in line with

common intuition, freight vehicles are better off when more curbside is reserved for dedicated delivery

bays. This reduces the number of freight vehicles that are blocked to the parking system, implying

fewer vehicles to park illegally. Interestingly, in freight intensive curbsides such as downtown business

districts, an increase in the number of delivery bays does not only reduce the blocking probability

of freight vehicles, but may also reduce the blocking probability of passenger vehicles if the freight

unloading time is shorter at a bay parking stretch than at a street parking stretch. Further, in such

freight intensive areas, the system blocking probability is non-monotonous in the number of delivery

bays due to the complex interaction of delivery vehicles moving from blocked delivery bays to

available on-street parking spaces. Hence, a system may be performing better overall, if the number

of delivery bays is increased. This may seem counterintuitive, since common intuition may be that

fewer allocation restrictions would improve overall performance. In such freight-intensive systems, it

is hence critical for urban planners to explicitly model the interaction between the usage of dedicated

delivery bays and general on-street parking by delivery vehicles. Finally, we show that in passenger

intensive areas, the interaction between the bay parking stretch and the street parking stretch is

much more limited, since the street parking spaces are usually occupied by cars. Due to this limited

interaction, metrics like system utilization are much less sensitive to delivery vehicles making use of

the general street parking. In such systems, urban planners can analyze the consequences of both

spaces more or less independently.

We believe our model is the first to study the role of delivery bays in an urban logistics setting in

a stochastic manner. The framework we provide can serve as a basis for further work in this area,

as it can be extended to a queueing network to represent more extensive relations between multiple

separate bay parking stretches and street parking stretches in an urban setting.
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The remainder of our paper is organized as follows. Section 2 reviews the literature. Section

3 defines the queueing model under consideration. Section 4 analyzes our model and gives the

performance measures and their monotonocity properties in the number of parking spaces. Section

5 presents an approximate analysis for the parking system allowing us to study the effect of different

parking times between delivery vehicles and passenger vehicles, and provides an approximation to

incorporate time-dependent vehicle arrivals in our modeling framework. Section 6 presents numerical

examples to demonstrate the impact of explicitly linking the bay parking stretch with the street

parking stretch on the blocking probability of vehicles and the system utilization. We conclude in

Section 7.

2. Literature Review

In the existing literature, various queueing models have been studied for parking systems, among

which the M/M/c/c queue is the most widely used model (Hauer and Templeton 1972, Caliskan

et al. 2007, Dalla Chiara and Cheah 2017, Dowling, Ratliff, and Zhang 2019). Wigan and Broughton

(1980) use a discrete-time semi-Markov chain to investigate the occupancy of a parking area over

time by allowing variations in the arrival of vehicles and their lengths of stay. Based on a birth-

death process, a queueing model is studied to capture the behavior of cruising drivers searching for

inexpensive on-street parking, where economic effects of congestion pricing are analyzed (Larson

and Sasanuma 2007). Caliskan et al. (2007) develop a model using a continuous-time homogeneous

Markov process to predict parking lot occupancy at the time of arrival in a vehicular ad-hoc network

(VANET). Based on the parking information exchanged among vehicles through the VANET, their

model enables each vehicle to make a parking decision on the available parking lots. Dalla Chiara

and Cheah (2017) investigate loading bays at urban malls as queueing systems. In their study, they

collect data through various means to first estimate the arrival rates and the parking duration of

freight vehicles unloading goods at two large urban retail malls in Singapore, and then analyze the

congestion of the loading bays and its effect on the drivers’ choice of parking. Using an M/M//c/c

queueing model, Xiao, Lou, and Frisby (2018) propose a model-based predictive framework for

parking occupancy, which they validate using both real and simulated data. In addition, they show

numerically that their proposed model-based predictive method performs better than pure machine

learning parking occupancy prediction methods. In a recent study, Dowling, Ratliff, and Zhang

(2019) examine curbside parking as a network of finite capacity queues, where performance metrics

such as the rate of rejection of vehicles searching for parking and the parking occupancy are estimated

using a simulation. In our paper, we consider both freight vehicles conducting delivery activities

and passenger vehicles seeking parking space. They make use of the same common parking space,

where a share of this parking space has been reserved for loading and unloading only. We believe
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such a system – despite being very common in the reality of cities – has not been studied in the

literature. Especially the interaction between freight vehicles and passenger vehicles makes it very

different from any of the prior studies.

From a more general perspective beyond parking, the queueing model studied in this paper

is designed to provide an overflow mechanism. In the queueing literature, overflow policies have

been widely studied. The most simple overflow strategy is to reject or outsource (in the context

of call centers) some customers at arrival from a single queue (Ku and Jordan 2003, Maglaras and

Van Mieghem 2005, Ward and Kumar 2008, Xu 2015, Niyirora and Zhuang 2017). These papers

study the relation between the wait and the rejection flow. The system’s design parameters are the

staffing level and the rejection threshold. However, in these prior studies the service quality offered to

rejected customers is neglected. Therefore, as in our paper, other studies propose to build queueing

models which provide service to customers in overflow. For this purpose, more complex architectures

have been investigated. For instance, in the context of outsourcing, Gans and Zhou (2007) study

a call center with high and low value calls and evaluate routing schemes for outsourcing part of

the low value calls, investing different priority queues. Gurvich and Perry (2012) consider a service

network operated under a threshold-type overflow mechanism. If the waiting room is full, the call

is overflowed to an outsourcer. They show that the larger the system becomes, the more negligible

the dependency between each in-house station and overflow station. The same phenomenon is also

observed in our queueing model. Specifically, the architecture in our paper is the so-called N -design.

The N -design is more complex than the V -design as two teams of servers are considered and the

overflow depends on the congestion in one of the queues (Bassamboo, Harrison, and Zeevi 2006).

Although the performance in the N -design model can only be obtained numerically, using a Markov

decision process approach Koole, Nielsen, and Nielsen (2015) tackle the problem of optimizing

customers’ overflow based on the system’s wait. In contrast with their study, the theoretical novelty

in our paper is that we investigate the monotonicity properties in the staffing levels for the N -design.

Our study hence is the first to explicitly study the performance for freight delivery of a parking

system that is very common in many cities: a collection of dedicated delivery bays and general

on-street parking spaces. In order to model this, we develop a novel queueing model that bares some

similarities to earlier models in the call-center performance analysis literature. We theoretically

show monotonicity properties of our parking system, and numerically analyze its performance to

help urban planners better understand the trade-offs when allocating scarce public parking space.

3. Model

We consider a parking system of c parking spaces with two types of vehicle; freight delivery vehicles

and passenger vehicles. We refer to the former ones as class-1 vehicles while the latter are class-2
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vehicles. The arrival process of class-i vehicles is Poisson with parameter λi for i= 1,2. The parking

system consists of cb delivery bays (bay parking) and cs general on-street parking spaces (street

parking) with cs+ cb = c. Freight vehicles (i.e. class-1 vehicles), arriving for unloading, are routed in

priority to the bay parking stretch. If they find vacant parking spaces, they enter the bay parking

stretch, complete their deliveries, and then leave the system. If all bay parking spaces are occupied,

they move to the street parking stretch in order to find vacant parking spaces so that they can make

their deliveries at the street parking stretch. If also no vacant parking spaces at the street parking

stretch are available (i.e., all parking spaces are occupied), they leave the parking system. Passenger

vehicles (i.e., class-2 vehicles) are only allowed to park at the street parking stretch.

We assume that parking times at the bay and street parking are exponentially distributed with

parking rates µb and µs, respectively. In this way, parking times have the same distribution for class-

1 and class-2 vehicles at the street parking and class-1 vehicles have different parking times whether

they park at the bay or at the street parking. While the former assumption is made for tractability,

the latter one allows parking times (service times) of delivery vehicles at the street parking stretch

to be longer than that at the bay parking stretch. This is due to the fact that the space at the

street parking stretch might be too small for (un)loading, or other vehicles interfere in the delivery

operation. Nevertheless, parking times at the street parking might be different for class-1 and class-2

vehicles. The parking system is depicted in Figure 1. This initial model is analyzed is Section 4. We

121 2cb cs

λ1

Bay parking Street parking

λ2
Figure 1 The parking viewed as a queueing system

extend this model in Section 5 and develop approximations to account for different parking times for

class-1 and class-2 vehicles at the street parking, termed µ1
s and µ2

s, and time-dependent sinusoidal

arrival rates, termed λi(t) for t≥ 0.
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External validation. We validate our key assumptions on the distributions through a statistical

analysis. Specifically, we conducted an empirical data analysis supporting our assumption that the

arrival processes of both freight and passenger vehicles follow Poisson processes with different rate

parameters, and their parking times are exponentially distributed. We use the 2014 data from the

city of Melbourne, Australia (Melbourne City Council 2014) that has been collected using sensors on

parking bays in the downtown area. In addition, the dataset includes specific information whether a

parking bay is a delivery bay (for freight) or a general parking area (for general on-street parking).

We use all transactional data for one particular parking system consisting of a stretch of 6 delivery

bays and 6 general on-street parking places, and analyze these transactional data in one-hour clusters

for freight parking and two-hours clusters for passenger parking. For each of these hours, we test

our distribution assumptions using the appropriate Kolmogorov-Smirnov (KS) goodness-of-fit test

(Kolmogorov 1933, Smirnov 1948). For all but one of the delivery vehicle arrival time clusters and

also for all but one of the car arrival time clusters, we do not exceed the KS statistic and hence

cannot reject the hypothesis that the distribution of the parking times is exponential. We use the

same data but clustered by day to test the hypothesis that the arrivals are Poisson distributed. With

174 days of observations with freight vehicles, in 85% of the days we cannot reject the hypothesis

that the arrival process is Poisson. Similar, for passenger vehicles this is true for 89%. It hence seems

quite reasonable to make the assumptions as stated above.

Performance measures. To analyse the parking system, we define some key stationary performance

measures which allows us to understand the parking system behavior and the service quality offered

to users. To measure service quality we consider the blocking probability, which is the probability of

not finding an available parking space at arrival. Class-1 vehicles have access to both parking lots.

We thus distinguish between the blocking probability of class-1 vehicles given an arrival at the bay

and at the street parking, termed πb1 and πs1, respectively. The total blocking probability for class-i

vehicles is termed πi for i= 1,2 and the total blocking probability of an arbitrary vehicle is termed

π.

The system behavior is characterized by its utilization, defined as the expected proportion of

occupied parking spaces. We consider the bay and street parking expected utilization, termed Ub and

Us, respectively, and the global parking system utilization, termed U . To define different workload

levels, we use the notion of offered load per server. It is computed as the ratio between the arrival

rate in one system divided by the product of the number of parking spaces and the parking rate.

Thus, an offered load per server of 1 or more corresponds to a system operating at its maximum

processing capacity where the mean rate of vehicles arrivals is equal to or exceeds the processing

capacity of the parking. As for the expected utilization, we consider the offered load per server at

the bay parking, termed ρb, at the street parking, termed ρs.
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Table of Notations. We end this section with a table of Notations (Table 1) used throughout the

paper.

Table 1 Table of notations

System parameters
λi Arrival rate of class-i vehicles for i= 1,2
µb Parking rate at the bay parking (i.e. 1/µb is the expected parking time at the bay parking)
µs Parking rate at the street parking (i.e. 1/µs is the expected parking time at the street parking)
µis Parking rate of class-i vehicles at the street parking for i= 1,2 when class-1 and class-2 vehicles

have different parking times
cb Capacity of the bay parking
cs Capacity of the street parking
c Total system capacity (i.e., c= cb+ cs)

Performance measures
Ub, Us, U Bay utilization, street utilization, system utilization
ρb, ρs Offered load per server at the bay parking and at the street parking, respectively
πb1 Blocking probability of a class-1 vehicle given an arrival at the bay parking
πs1 Blocking probability of a class-1 vehicle given an arrival at the street parking
π1 Blocking probability of a class-1 vehicle at an arrival instant in both parking lots
π2 Blocking probability of a class-2 vehicle
π Blocking probability of an arbitrary vehicle

4. Analysis

We now provide an analysis of the queueing system introduced above. In Section 4.1, we derive

the main performance measures. In Section 4.2, we provide key monotonicity results to explain the

behavior of our queueing system related to the allocation of parking spaces between bay parking and

street parking. Theoretically, the monotonicity provides important insights into the fundamental

characteristics of the system. From a more pragmatic perspective, the monotonicity results allow

for the creation of simple algorithms that can be deployed for decision making in urban planning.

4.1. Performance measures

We obtain the performance measures from the analysis of the M/M/cb/cb and GI +M/M/cs/cs

queues which correspond to the bay and street parking, respectively. The performance measures of

interest are presented in (1)-(8).

Bay parking. The bay parking stretch can be viewed as an M/M/cb/cb queue (Ross 2014), where

the first M in the Kendall notation denotes the Markovian interarrival times with rate λ1, the

second M refers to the exponential parking times with rate µb, the first cb is the total number of

bay parking spaces, and the last cb refers to the capacity of the bay parking. This queueing model
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is also known as the Erlang loss system. We recall the performance measures of interest for this

model (e.g., see p.564 in Ross (2014)):

πb1 =

 cb∑
k=0

(
λ1
µb

)k−cb
cb!

k!


−1

, Ub =
λ1

cbµb
(1−πb1), and ρb =

λ1

cbµb
. (1)

Street parking. One useful result for the analysis is that the output flow of lost class-1 vehicles

from an M/M/cb/cb queue forms a renewal process. This result is stated in the first paragraph

of Section 3 in Takács (1959). An overview of the results related to the output flows in standard

queueing systems can be found in Daley (1976). Therefore, both types of vehicles arrive at the

street parking stretch according to mixed renewal and Poisson processes (denoted by GI+M). Thus,

the street parking stretch is considered as a GI +M/M/cs/cs queue. As a consequence, the total

arrival rate of vehicles (including both freight and passenger) to the street parking stretch, is equal

to λ1π
b
1 +λ2. Consequently, the offered load per server at the street parking stretch is given by

ρs =
λ1π

b
1 +λ2

µscs
. (2)

The other performance measures cannot be obtained in closed-form. Using the GI +M/M/cs/cs

queueing model analyzed by Kuczura (1973), we numerically derive the steady-state probability of

occupying j parking spaces at an arrival epoch of a class-1 vehicle, denoted by p1j for j = 0,1, · · · , cs,
by solving the following linear system of equations:

p1j =

cs∑
i=0

p1i ri,j, j = 0,1, · · · , cs,

where

ri,j = aj +

cs∑
k=1

βk(i+ 1, j)α̃(−γkµs), for i= 0,1, · · · , cs− 1,

rcs,j = aj +

cs∑
k=1

βk(cs, j)α̃(−γkµs),

with

α̃(s) =

cb∑
j=0

(
cb
j

)j−1∏
i=0

s+iµb
λ1

cb+1∑
j=0

(
cb+1
j

)j−1∏
i=0

s+iµb
λ1

, aj =

 cs∑
k=0

(
λ2
µs

)k−j
j!

k!


−1

, βk(i, j) =
cs!
(
λ2
µs

)cs−i
Di(γk)Dj(γk)

j!γkDcs(γk)D
′
cs

(γk + 1)
,
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and where the γk’s, k = 1,2, · · · , cs, are the k roots of the polynomial Dcs(ξ + 1), with Di(ξ) =
i∑

k=0

(
i

k

)(
λ2

µs

)i−k
ξ(ξ+ 1) · · · (ξ+ k− 1) for i > 0 and D0(ξ) = 1.

The blocking probability of a class-1 vehicle in the street parking stretch is the probability of

finding the fully occupied street parking stretch at its arrival time. Therefore, we have

πs1 = p1cs . (3)

There remains to find the blocking probability of passenger vehicles in the street parking stretch.

The steady-state probability of occupying j servers at an arrival epoch of a class-2 vehicle, denoted

by p2j , is given by

p2j =

(
λ2
µs

)j
p20

j!
+
λ1π

b
1

µs

j−1∑
i=0

i!
(
λ2
µs

)j−i−1
p1i

j!
, for j = 1,2, · · · , cs,

where p20 is determined by the normalization condition, i.e.,

p20 =

1− λ1π
b
1

λ2

cs∑
j=1

(
λ2
µs

)j
j!

j−1∑
i=0

i!p1i(
λ2
µs

)i
cs∑
j=0

(
λ2
µs

)j
j!

.

Thus, the blocking probability of arriving passenger vehicles (class-2 blocking probability) in the

street parking stretch is given by

π2 = p2cs . (4)

The total blocking probability of an arbitrary arriving vehicle in the street parking stretch is the

weighted average of the blocking probabilities of class-1 and class-2 vehicles in the street parking

stretch: λ2
λ2+λ1π

b
1
π2+

λ1π
b
1

λ2+λ1π
b
1
πs1. Therefore, the total effective arrival rate of class-1 and class-2 vehicles

to the street parking stretch equals (λ2 + λ1π
b
1)
(

1− λ2
λ2+λ1π

b
1
π2− λ1π

b
1

λ2+λ1π
b
1
πs1

)
. Using Little’s law

(Little 1961), the expected number of occupied parking spaces at the street parking stretch, is equal

to the effective arrival rate multiplied by the mean time that a vehicle spends in the system. By

dividing this quantity by cs, we deduce the street utilization:

Us =
λ2 +λ1π

b
1

µscs

(
1− λ2

λ2 +λ1πb1
π2−

λ1π
b
1

λ2 +λ1πb1
πs1

)
. (5)
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Parking system. As the class-1 vehicles arriving to the street parking stretch are those which are

blocked to the bay parking stretch, the total blocking probability of class-1 vehicles in the parking

system is the product of the blocking probabilities of freight vehicles in the bay parking stretch and

in the street parking stretch:

π1 = πs1π
b
1. (6)

The total blocking probability of an arbitrary arriving vehicle in the parking system (system blocking

probability) is the weighted average of the blocking probabilities of class-1 and class-2 vehicles:

π=
λ1

λ1 +λ2

π1 +
λ2

λ1 +λ2

π2. (7)

Similarly, the utilization of the parking system (system utilization) at an arbitrary time is the

weighted average of the bay utilization and the street utilization at an arbitrary time:

U =
cb
c
Ub +

cs
c
Us. (8)

4.2. Monotonicity properties of the performance measures

We now investigate the monotonicity properties in cb of the performance measures given in (1)-(8).

This analysis supports the numerical investigations of Section 6. As some of the performance mea-

sures cannot be obtained in closed-form, we pursue an iterative Markov decision process approach

where monotonicity results can be proven without using explicit formulas. We hold the total number

of parking spaces c constant. Given that cb + cs = c, having one extra space at the bay parking

stretch means removing one parking space from the street parking stretch.

The Markov chain. Our system can be represented by a finite state Markov chain. A state of

the system is denoted by (x, y), where x is the number of vehicles at the bay parking stretch for

0≤ x≤ cb and y is the number of vehicles at the street parking stretch for 0≤ y ≤ c− cb. We do

not need to distinguish between class-1 and class-2 vehicles at the street parking stretch since they

both have the same parking time distribution. The four possible transitions in the Markov process

are as follows:

• A class-1 vehicle arrival with rate λ1 from state (x, y) with y < c− cb, which changes the state

either to (x+1, y) if x< cb, that is the number of vehicles at the bay parking stretch is increased by

one, or to (cb, y+1) if x= cb, that is the number of vehicles at the street parking stretch is increased

by one.
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• A class-2 vehicle arrival at the street parking stretch with rate λ2 from state (x, y) with y <

c− cb, which changes the state to (x, y + 1), that is the number of vehicles at the street parking

stretch is increased by one.

• A parking lot exit with rate xµb from state (x, y) with x > 0, which changes the state to

(x− 1, y), that is the number of vehicles at the bay parking is decreased by one.

• A parking lot exit with rate yµs from state (x, y) with y > 0, which changes the state to

(x, y− 1), that is the number of vehicles at the street parking is decreased by one.

The cost function. We introduce a cost function f(cb, x, y) for 0≤ x≤ cb and 0≤ y≤ c− cb, which
enables us to compute any desired performance measure, except πs1. Given that the arrival process

of class-1 vehicle at the street parking is not Poisson, we cannot capture πs1 via a Markov decision

process formulation. In Table 2, we indicate how the cost function f(cb, x, y) should be defined to

capture a desired metric. We denote by 1A the indicator function of a given subset A.

Table 2 Definitions of the cost functions f(cb, x, y)

Performance measures f(cb, x, y)

πb1 1x=cb
π1 1x=cb,y=c−cb
π2 1y=c−cb

π
λ11x=cb,y=c−cb+λ21y=c−cb

λ1+λ2

Ub
x
cb

Us
y

c−cb
U x+y

c

ρb
λ1
µbcb

ρs
λ11x=cb+λ2
µs(c−cb)

Computation of the value function. Our system is uniformizable as the maximal event rate, λ1 +

λ2 + cbµb + (c − cb)µs, is bounded. We assume, without loss of generality that λ1 + λ2 + cbµb +

(c− cb)µs = 1, such that the transition rates in the continuous time Markov chain are viewed as

transition probabilities in the discrete time one. We are now in position to introduce the system

value function Vk(cb, x, y) over k steps for 0≤ x≤ cb, 0≤ y≤ c− cb, and k≥ 0. For k≥ 0, 0≤ x≤ cb,
and 0≤ y≤ c− cb, we choose V0(cb, x, y) = 0, and we express Vk+1 as a function of Vk as follows:

Vk+1(cb, x, y) = f(cb, x, y) (9)

+λ1

(
1x<cbVk(cb, x+ 1, y) +1x=cb,y<c−cbVk(cb, x, y+ 1) +1x=cb,y=c−cbVk(cb, x, y)

)
+λ2

(
1y<c−cbVk(cb, x, y+ 1) +1y=c−cbVk(cb, x, y)

)
+xµbVk(cb, x− 1, y) + yµsVk(cb, x, y− 1) + (1−λ1−λ2−xµb− yµs)Vk(cb, x, y).
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As k tends to infinity, the difference Vk+1 − Vk converges to the long-run average cost (Puterman

2014), that is the desired performance measure. The convergence is due to the aperiodic irreducible

finite-state Markov chain considered here. The aperiodicity is due to the fictitious transitions from

a state to itself. Therefore, by studying the properties of Vk in cb, we can deduce those of the

performance measures. This approach has been successfully employed to show monotonicity results

for some queueing model where either the performance measures cannot be found explicitly (Bhulai,

Brooms, and Spieksma 2014) or they lead to formulas which are difficult to manipulate (Legros and

Jouini 2019, Legros 2021).

Monotonicity results. In Corollary 1, we provide the first order monotonicity properties of the

performance measures. To this end, in Theorem 1, we prove by induction on k that Vk belongs

to some classes of functions, C and C′. We define the class of functions C as follows: h ∈ C if for

0≤ x≤ cb ≤ c, and 0≤ y≤ c− (cb + 1), we have

h(cb, x, y)≥ h(cb + 1, x, y), (10)

h(cb, x, y+ 1)≥ h(cb, x, y), and (11)

h(cb, x, y)≥ h(cb + 1, x+ 1, y). (12)

We also define the class of functions C′ which differs from C where (12) is replaced by (13), defined

as

h(cb, x, y+ 1)≥ h(cb + 1, x+ 1, y), (13)

for 0≤ x≤ cb ≤ c, and 0≤ y≤ c− (cb+1). The class of function C′ is a subset of C. This can be seen

by summing up (11) and (12), leading to (13). By summing up (10) and (11), we generate (14):

h(cb, x, y+ 1)≥ h(cb + 1, x, y), (14)

for 0≤ x≤ cb ≤ c, and 0≤ y≤ c− (cb + 1). This relation is satisfied both in C′ and C. Relation (10)

for Vk proves that a performance measure is decreasing in cb. Relations (11) and (12) are needed

to prove that (10) holds for Vk. However, for most definitions of the cost function f(cb, x, y), (12)

is not satisfied. That is why we alternatively introduce (13) which is met for more cost functions.

However, to show (13) without (12) we need to have µb ≥ µs.

Theorem 1 The following holds:

• If f ∈ C, then Vk ∈ C, for k≥ 0.
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• If f ∈ C′ and µb ≥ µs, then Vk ∈ C′, for k≥ 0.

In Table 3, we indicate whether f satisfies Relations (10)-(13) for the different performance measures

under consideration. In case either f belongs to C′ or C, then the considered performance measure

is decreasing in cb. The proof of Corollary 1 follows from Table 3.

Table 3 Properties of the cost function

Cost function f(cb, x, y) Relation (10) Relation (11) Relation (12) Relation (13)

1x=cb for π
b
1 Yes Yes Yes Yes

1x=cb,y=c−cb for π1 Yes Yes No Yes
1y=c−cb for π2 No Yes No Yes
λ11x=cb,y=c−cb+λ21y=c−cb

λ1+λ2
for π No Yes No Yes

x
cb

for Ub Yes Yes No No
y

c−cb
for Us No Yes No Yes

x+y
c

for U Yes Yes No Yes
λ1
µbcb

for ρb Yes Yes Yes Yes
λ11x=cb+λ2
µs(c−cb)

for ρs No Yes No No

Corollary 1 The following holds:

• The bay blocking probability πb1 and the offered load per server at the bay parking ρb are decreasing

in cb.

• Under the condition µb ≥ µs, the freight blocking probability π1 and the total utilization rate U

are decreasing in cb.

The results of Corollary 1 are novel in the analysis in the N−design queueing model. In addition,

these results may allow us to dimension the two parking systems by setting the number of parking

spaces at the bay parking stretch cb. The value of cb is determined to ensure a certain number of

dedicated parking spaces for freight vehicles only. Given that the total number of parking spaces

in the parking system c is kept constant, having a large cb worsens the performance metrics for

passenger vehicles.

Example: For instance, one objective of the system manager may be to select cb as small as possible

such that the freight blocking probability, π1, remains below a certain service level objective, π1

(i.e., π1 ≤ π1). From Corollary 1, π1 is decreasing in cb. Thus, the derivation of cb can be obtained

after a finite number of iterations from a simple algorithm stated as follows:

• Step 0: Set cb = c and compute π1. If π1 > π1, then the algorithm stops and the constraint

π1 ≤ π1 cannot be met. Otherwise, go to Step 1.

• Step 1: Set cb = 0 and compute π1. If π1 ≤ π1, then cb = 0 is optimal, otherwise go to Step 2.
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• Step 2: Set cb := cb + 1 and compute π1. If π1 ≤ π1, then cb is optimal, otherwise go back to

Step 2.

Regardless of the evidence resulting from our data analysis, it is interesting and relevant to note

that our analysis above is robust to the distribution assumption of the parking times. That may be

surprising, because the approximation of a general distribution by an exponential one for the classical

single-server M/GI/1 queue would lead to a very poor approximation quality. The particularity of

our model, however, is that waiting is not permitted. The bay parking behaves exactly as the Erlang

loss model. In the Erlang loss model, the steady-state distribution does not depend on a general

service-time distribution beyond its mean.

5. Incorporating nonidentical parking times and time-dependent arrivals

In this section, we propose two approximations to obtain the performance measures with noniden-

tical parking time distributions at the street parking for class-1 and class-2 vehicles in Section 5.1

and for time-dependent sinusoidal arrival rates in Section 5.2. The approximations are evaluated in

Section 5.3.

5.1. Nonidentical freight and passenger vehicle parking time distributions

In the initial model analyzed in Section 3, parking times of class-1 and class-2 vehicles are expo-

nentially distributed with the same rate µs. In reality, however, it is likely that the parking time

distributions between freight and passenger vehicles in the street parking stretch are nonidentical.

To account for this, we assume that the parking time a class-i vehicle at the street parking is expo-

nentially distributed with rate µis for i= 1,2 with µ1
s 6= µ2

s. this means that the parking time at the

street parking has an hyperexponential distribution with rates µ1
s and µ2

s.

The idea of the approximation is to assume that the parking rate of an arbitrary vehicle at the

street parking is the mean parking rate between class-1 and class-2 vehicles. Therefore, we replace

the hyperexponential parking time distribution by an exponential one. In this way, the analysis of

Section 4.1 can be reemployed to derive the performance measures. As the arrival rate of class-1

and class-2 vehicles at the street parking are λ1π
b
1 and λ2, respectively, the mean parking rate µs is

given by

1

µs
=

λ1π
b
1

λ1πb1 +λ2

1

µ1
s

+
λ2

λ1πb1 +λ2

1

µ2
s

.

Note that this approximation does not impact the performance measures at the bay parking stretch.
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5.2. Time-dependent arrivals

In our model in Section 3, the arrival rates at each parking stretch are assumed to be constant

over time. This may not be realistic, because in some areas, there is a very pronounced variation

depending on time-of-day or day-of-week. If the time-dependency is slowly varying relative to the

system dynamics, then such systems have been typically analyzed using a point-wise stationary

approximation, where the performance at time t is approximated by the steady-state performance of

the stationary system with constant arrival rates given by the mean arrival rate on a given interval

around the observation point (Green and Kolesar 1991, Jennings et al. 1996). We propose to employ

this approach to approximate the long-run performance measures.

We assume that the arrival rates are sinusoidal time-dependent parameters as in Eick, Massey,

and Whitt (1993), with

λi(t) = λi +λiαi sin

(
2π̃t

Ψi

)
,

for i= 1,2, with λi > 0, 0<αi < 1 and where π̃' 3.14159265. The expression of λi(t) is convenient

for interpretation; λi is the average arrival rate, αi is the relative amplitude, and Ψi is the cycle

length. The mean arrival rate over an interval [t, t+L], λ[t,t+L]
i , is given by

λ
[t,t+L]
i =

1

L

∫ t+L

z=t

[
λi +λiαi sin

(
2π̃z

Ψi

)]
dz

= λi +
λiαi
L

Ψi

π̃
sin

(
π̃(2t+L)

Ψi

)
sin

(
π̃L

Ψi

)
, for i= 1,2.

In our approximation, we consider intervals of equal length L, where L is chosen such that the num-

ber of intervals per cycle, n1 = Ψ1/L and n2 = Ψ2/L, are integers. To obtain a full cycle common

to class-1 and class-2 arrivals, we need to observe a number of intervals equal to the least common

multiple of n1 and n2. Using the mean arrival rate on each interval, we determine the performance

measures of each interval using the results of our original model as presented in Section 4.1. To esti-

mate the long-run performance measures, we compute the average performance measures weighted

by the mean arrival rate on each interval.

5.3. Evaluation of the approximations quality

We now evaluate the quality of the proposed approximations. In Table 4, we derive the maximal

error between simulation and the approximation for each performance measure by varying cb from

0 to c. The error is computed as the difference between the performance obtained via a simulation

and the one obtained with the approximation. We present the following sets of parameters with

non-identical parking times:
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• Set 1: c= 20, λ1 = 0.8, λ2 = 0.4, µb = µ1
s = 1/30, µ2

s = 1/60,

• Set 2: c= 20, λ1 = 0.8, λ2 = 0.4, µb = µ1
s = 1/30, µ2

s = 1/120,

• Set 3: c= 20, λ1 = 0.2, λ2 = 0.3, µb = µ1
s = 1/30, µ2

s = 1/60,

• Set 4: c= 20, λ1 = 0.2, λ2 = 0.3, µb = µ1
s = 1/30, µ2

s = 1/120.

In Set 1 and Set 2, freight vehicles have a larger arrival rate than passenger vehicles; the reverse is

the case in Set 3 and Set 4. We select identical parking rates for class-1 vehicles at the bay and street

parking lots (i.e., µb = µ1
s). In addition, the expected parking times of class-2 vehicles are set longer

than the expected parking times of freight vehicles (i.e, µ2
s < µb). For time-dependent arrivals, we

consider the following sets of parameters:

• Set 5: c= 20, λ1 = 0.4, λ2 = 0.1, α1 = α2 = 0.5,Ψ1 = 720,Ψ2 = 1440, µb = 1/30, µs = 1/60,

• Set 6: c= 20, λ1 = 0.4, λ2 = 0.8, α1 = α2 = 0.5,Ψ1 = 720,Ψ2 = 1440, µb = 1/30, µs = 1/60.

For these two sets of parameters, the cycle length of the passenger arrivals is equal to a full day of

24 hours and is double as the one of freight arrivals. The parameters α1 and α2 are set to 0.5, which

captures a substantial time-dependent effect of +/-50% around the mean arrival rate. The mean

arrival rates in Set 5 are chosen to represent a freight-intensive area while those of Set 6 represent

a passenger-intensive area. In the approximation, we set the length of each interval L equal to 3

hours such that a full 24-hour cycle of arrivals for both passenger and freight vehicles is divided into

8 intervals. This value is observed to provide a good approximation in our experiments. The choice

of L is in general complex to make and may require optimization. A small value for L is interesting

as the mean arrival rate on each interval is close to the real value of the arrival rate at each point

in time during the interval. However, with a small value of L, the stationary regime may not be

reached on each interval and a non-negligible number of vehicles could be present on more than one

interval which deteriorates the quality of the approximation.

Table 4 Maximum error

Non-identical parking times Time-dependent arrivals
Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

πb1 0.00% 0.00% 0.00% 0.00% 0.86% 0.86%
π1 0.42% 0.56% 0.09% 0.23% 0.69% 0.76%
π2 0.92% 1.14% 0.47% 0.82% 0.49% 0.09%
π 0.57% 0.72% 0.27% 0.54% 0.59% 0.27%
Ub 0.00% 0.00% 0.00% 0.00% 5.75% 5.75%
Us 0.22% 0.21% 0.25% 0.15% 5.88% 0.30%

The results in Table 4 show the good quality of the approximations. For the approximation with

non-identical parking times, the results with the approximation never exceed 1.2% difference with the

simulation. Recall that at the bay parking stretch the approximation leads to the exact performance.
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We also observe that the approximation in the case of time-dependent arrivals provides good results

with a difference being below 1% for the blocking probabilities. Nevertheless, the bay and street

utilizations show a larger gap between the approximation and the exact model. This observation

is in line with the results in the literature explaining that the point-wise stationary approximation

provides better results for extreme probabilities (e.g., probability of an empty system or blocking

probability) than for metrics involving the distribution of the number of customers in the system

(e.g., expected wait or expected number of customers) (Green and Kolesar 1991, Jennings et al.

1996). Yet, even for these metrics, the difference between the approximation and the simulation

never exceeds 6%.

Another observation is that our approximations underestimate the simulations. This can be

understood intuitively. For the approximation with non-identical parking times, the variability of

the parking times is underestimated as we derive the performance measures under an exponential

assumption whereas in the exact model the parking times have an hyperexponnetial distribution

which has a higher variability than the exponential distribution. In the time-dependent approxima-

tion, we replace the real arrival rate by its mean on each interval. The resulting arrival process in

the approximation then has a lower variability than the real one, leading to an underestimation of

the performance measures.

6. Numerical evaluation

In this section, we perform a series of numerical experiments of our base model in order to obtain

insights into the consequences of linking the bay parking and the street parking stretches into a

single parking system. In particular, we characterize the impact of dedicating a certain number

of on-street parking spaces to delivery bays on the fraction of lost freight (class-1) and passenger

(class-2) vehicles (i.e., on their blocking probabilities), and on the utilization of the bay parking and

the street parking stretches. Recall that we keep the total number of parking spaces constant such

that if we allocate more parking spaces to the bay parking stretch, the number of parking spaces in

the street parking stretch decreases by the same number. To provide broader general insights, we

study both an area where more freight vehicles arrive than passenger vehicles (Section 6.1) and an

area where the reverse is the case (Section 6.2). To facilitate the comparison, we select parameters

such that the performance measures at the Bay parking are identical in these two examples (see

Figure 2). In Section 6.3, we provide a practical illustration of the usage of our model using data

from the Melbourne data set (Melbourne City Council 2014).
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(a) Bay blocking probability (πb1) and bay utilization (Ub)
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(b) Bay offered load per server (ρb)

Figure 2 Bay performance measures for Examples 1 and 2 (c= 20, λ1 = 0.4, µb = 1/30)

6.1. Example 1: Freight-intensive area

In this example, we have more freight vehicles arriving to the parking system than passenger vehicles

(cars), as may be common in commercial downtown areas like a Central Business District. We set

four times more freight vehicles arriving per time unit to the parking system than passenger vehicles.

Freight vehicles park 30 minutes on average for unloading at the bay parking stretch. Parking times

of passenger vehicles and freight vehicles arriving at the street parking stretch are assumed to be

identical in distribution. For this setting, we choose the model parameters c = 20, λ1 = 0.4, λ2 =

0.1, µb = 1/30. In this example, we vary the parking rate at the street parking stretch, µs, in order

to gain insight into the impact of this parameter on performance measures of the parking system

while also varying the number of parking spaces at the bay parking stretch, cb.

The results are given in Figures 2 and 3. They illustrate Corollary 1. That is, the bay blocking

probability (Figure 2(a)), the offered load per server to the bay parking stretch (Figure 2(b)), the

fraction of lost freight vehicles (Figure 3(c)) and the system utilization (Figure 3(e)) decrease when

the number of the bay parking spaces increases. We also observe that the bay utilization decreases

in cb (Figure 2(a)). The results involving freight vehicles are intuitive. Freight vehicles have access

to more available parking spaces if more spaces are allocated to dedicated delivery bays. So, the

freight blocking probability decreases in cb (Figure 3(a)). It is also expected to have a decreasing

system utilization in cb as increasing cb reduces the overall accessibility of the parking system.

A non-expected result is that the fraction of lost cars (Figure 3(b)), the street utilization (Figure

3(d)) and the offered load per server at the street parking (Figure 3(f)) are not unimodal in cb

(i.e., strictly increasing or strictly decreasing). In particular, we observe that these different metrics

have a minimum in cb which differs from cb = 0 (i.e., no dedicated bay parking space) or cb = c

(i.e., inaccessible parking system to cars). This means that having an extra dedicated bay parking

space does not necessarily deteriorate the service level for cars at the street parking stretch. It
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(a) Freight blocking probability (π1)
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(b) Car blocking probability (π2)
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(c) System blocking probability (π)
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(d) Street utilization (Us)
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(e) System utilization (U)
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(f) Street offered load per server (ρs)

Figure 3 Street and system performance measures for Example 1 (c = 20, λ1 = 0.4, λ2 = 0.1, µb = 1/30, µs =

1/30,1/40,1/60)

may even reduce the car blocking probability. Two phenomena are in competition to explain this

behavior. First, as cb increases, cs decreases due to c= cb + cs. Thus, cars have access to a smaller

number of parking spaces which should deteriorate their service level. We call this phenomenon

the space-reduction effect. Second, as cb increases, freight vehicles have access to more dedicated

parking spaces. Thus, the flow of freight vehicles at the street parking is reduced with cb. This should

improve the service level for cars as the competition for a parking space at the street parking is
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reduced when cb increases. We call this phenomenon the competition-reduction effect. This existence

of this second phenomenon is proven in Corollary 1 as the blocking probability at the bay parking

is proven to decrease in cb. We observe that the competition-reduction effect is more apparent when

there is a high volume of freight vehicles compared to passenger vehicles as in the freight intensive

area considered here (λ1 > λ2) and when cars spend a sufficiently long time at the parking (effect

of µs).

We note that the minimum of the street utilization and the offered load per server to the street

parking stretch are not attained at the same size of the bay parking stretch cb (and consequently

also for the street parking stretch cs). This is due to the fact that the behavior of the offered load

per server does not change while changing the average parking time. As a consequence, it can be

noticed from Table 5 that the minimum of the offered load per server is attained at cb = 10, for all

three scenarios: µs = 1/30, µs = 1/40 and µs = 1/60. However, the street utilization is minimal when

there are 12 parking spaces at the bay parking stretch (cb = 12) for µs = 1/30 and µs = 1/40, and 13

parking spaces (cb = 13) for µs = 1/60. Due to the strong relationship between the freight vehicles

lost to the bay parking stretch and the vehicles arriving to the street parking stretch, this system

exhibits an interesting feature: it is possible to obtain a lower street utilization by having a higher

offered load per server to the street parking stretch. In such case, it means that the competition-

reduction effect is dominant for the street utilization while the space-reduction effect is dominant

for the offered load per server to the street parking stretch.

Table 5 Street utilization and offered load per server to the street parking stretch

(c= 20, λ1 = 0.4, λ2 = 0.1, µb = 1/30)

µs = 1/30 µs = 1/40 µs = 1/60
cb cs ρs Us ρs Us ρs Us

9 11 0.6659 0.6009 0.8879 0.7143 1.3318 0.8350
10 10 0.6623 0.5898 0.8831 0.7011 1.3246 0.8232
11 9 0.6637 0.5816 0.8849 0.6907 1.3274 0.8134
12 8 0.6729 0.5779 0.8971 0.6848 1.3457 0.8065
13 7 0.6941 0.5808 0.9255 0.6849 1.3882 0.8038
14 6 0.7344 0.5922 0.9792 0.6924 1.4688 0.8057

6.2. Example 2: Passenger-intensive area

In this example, the arrival rate of passenger vehicles is set at 0.8 (while it is 0.1 in Example 1),

representing an area that is passenger-car intensive. In Figure 4, it can be noticed that, due to the

higher arrival rate of passenger vehicles, the car blocking probability increases for all three scenarios

(µs = 1/30, µs = 1/40 and µs = 1/60) when the number of bay parking spaces increases (Figures



Abhishek, Legros, and Fransoo: Stochastic Systems with Dedicated Delivery Bays and General On-street Parking

Article submitted to Transportation Science; manuscript no. TS-2020-0165.R2 23

��

���

���

���

���

���

���

	��


��

���

����

� � � � � � � 	 
 � �� �� �� �� �� �� �� �	 �
 �� ��

�
���

�
���

�
���

��������	
��
�������	�	�
���

(a) Freight blocking probability (π1)

��

���

���

���

���

���

���

	��


��

���

����

� � � � � � � 	 
 � �� �� �� �� �� �� �� �	 �
 �� ��

�
���

�
���

�
���

��������	
���
�����
�
��

(b) Car blocking probability (π2)

��

���

���

���

���

���

���

	��


��

���

����

� � � � � � � 	 
 � �� �� �� �� �� �� �� �	 �
 �� ��

�
���

�
���

�
���

��������	
��
�����
���
	
��

(c) System blocking probability (π)

���

���

���

���

���

���

���

���

���

���

����

� � 	 
 � � � � � � �� �� �	 �
 �� �� �� �� �� �� 	�

�
�
�

�
���

�
���

������������	
����

(d) Street utilization (Us)

���

���

���

���

���

���

���

���

���

���

����

� � 	 
 � � � � � � �� �� �	 �
 �� �� �� �� �� �� 	�

�
�
�

�
���

�
���

���������	
	���	
�
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(f) Street offered load per server (ρs)

Figure 4 Street and system performance measures for Example 2 (c = 20, λ1 = 0.4, λ2 = 0.8, µb = 1/30, µs =

1/30,1/40,1/60)

4(b), 4(f)). In this case, the space-reduction effect is dominant. Another interesting phenomenon is

that the street utilization is insensitive to cb (Figure 4(d)). This is a consequence of the fact that

the arrival rate of cars is so high that the effect of decreasing the arrival rate of freight vehicles

(that are blocked to the bay parking stretch) on the total arrival rate to the street parking stretch

is negligible (i.e., negligible competition-reduction effect). As a result, it becomes harder for freight

vehicles to park at the street parking stretch.
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(d) System utilization (U)

Figure 5 Street and system performance measures for Example 3 (c= 4,6,12, λ1 = 0.04, λ2 = 0.03, µb = 1/11, µs =

1/40)

6.3. Example 3: Parameters based on empirical data

In this example, we demonstrate our methodology with parameters based on the empirical data that

we used above to support our assumption that the arrival processes of both freight and passenger

vehicles follow Poisson processes with different rate parameters, and their parking times are expo-

nentially distributed. We use these 2014 data from the city of Melbourne, Australia (Melbourne

City Council 2014) that have been collected using sensors on parking bays in the downtown area.

In addition, the dataset includes specific information whether a parking bay is a delivery bay (for

freight) or a general parking area (for general on-street parking). We use all transactional data

for one particular parking system consisting of a stretch of 6 delivery bays and 6 general on-street

parking places, and use the sample means as estimators for the model parameters.

The estimated model parameters are c = 12, cb = 6, λ1 = 0.04, λ2 = 0.03, µb = 1/11, µs = 1/40.

Figure 5 summarizes the main performance metrics for this Melbourne example as functions of cb.

The position which corresponds to c= 12 and cb = 6 is given by a cross on the curve corresponding

to c = 12. We also add the performance measures for c = 4 and c = 6 to illustrate the impact

of reducing the number of parking spaces. In this example, the system utilization of the parking
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system in Melbourne is considerably lower than the settings we studied in the previous two examples

(Figure 5(d)). Consequently, the vehicle blocking probabilities are very low (Figures 5(a) and 5(b)).

Actually, from an urban planning perspective, a very similar performance could be obtained with

only half size of the parking system (6 spaces), of which 2 are allocated to delivery bays. Even with

only 4 spaces available, the car blocking probability could be limited to under 0.2 and the freight

vehicle blocking probability under 0.06 if the number of delivery bays is set to 1 (out of 4 available

spaces). Interestingly, this specific numerical study shows how our model and associated insights

could be used to assess the overall sizes of parking systems, in addition to the earlier illustrated

decision support for the allocation decision.

7. Discussion and concluding remarks

In dense urban environments, freight delivery is highly fragmented. Many small stores can be served

on a route in emerging economies, while many homes can be served in a route in the most developed

cities of this world. Delivery vehicles to mom-and-pop operated nanostores in cities such as Bogota

or Quito have been reported to visit more than 100 such stores on a route, and courier companies

in cities such as London or Paris also make more than 150 stops on a route. As a result, vehicles

tend to be parked for a significant share of the route. In cities, this is visible on a day-to-day basis

by double-parked or otherwise illegally parked freight vehicles. Due to delivery times being highly

stochastic, both the parking times and the interarrival times of vehicles are also stochastic. It hence

makes sense to develop models that enable us to evaluate the performance of the allocation of public

space to bays that are dedicated for conducting deliveries.

In this paper, we analyze such a parking system as a queueing model with a stretch that is reserved

exclusively for freight deliveries and a general purpose on-street parking stretch. They are modeled

as a set of parallel servers. Upon arrival, delivery vehicles first attempt to park in a free dedicated

delivery bay; if not available, they park on the street. If also no street parking is available, they

leave our system not to return; in practice such blocking will lead to illegal parking as deliveries

always take place, and hence the freight vehicle system blocking probability can be seen as the

probability to park illegally. We believe our model is the first to study the role of delivery bays in

an urban logistics setting in a stochastic manner. The framework we provide can serve as a basis for

further work in this area, as it can be extended to a queueing network to represent more extensive

relations between multiple separate bay parking stretches and street parking stretches in an urban

setting. Our modeling approach hence provides a basis for much-needed analysis of the usage of

scarce public space for delivery in dense cities. In particular the fact that freight vehicles make use

of the general on-street parking if delivery bays are not available, leads to intricate behavior of the

entire parking system.
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The analysis of our model creates parsimonious insights into the behavior of a delivery bay parking

stretch as part of a limited stretch of curbside. We have provided explicit expressions for the relevant

performance measures, and formally proven a number of monotonicity results. Our numerical results

show that increasing the share of delivery bays decreases the share of delivery vehicles that is lost

to our system in line with decreased utilization of the bays. However, the effect on the fraction of

cars that is lost does not necessarily display such monotonic behavior. Especially in areas that are

freight-intensive in terms of curbside parking, also passenger vehicles might be better off if more

spaces are allocated for freight delivery only. Further, we illustrate for one particular real-life parking

system that a very similar performance in terms of blocked vehicles could be obtained with only half

the number of parking spaces, freeing up public space that can be appropriate for other purposes.

Our modeling approach can serve as a basis for more extensive models. For instance, it can be

enriched by studying interactions between different parking stretches, as for instance passenger

vehicles may be inclined to seek parking further away if no space is available. Also, it can be

interesting to study temporal allocation of delivery bays in case of time-dependent arrivals of freight

vehicles.
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Appendix A: Proof of Theorem 1

Since V0(cb, x, y) = 0, V0 ∈ C and V0 ∈ C′. Let us assume that Vk ∈ C′. We want to show that Vk+1 ∈ C′.

Relation (10). For 0≤ x≤ cb ≤ c, and 0≤ y≤ c− (cb + 1), we have

Vk+1(cb, x, y)−Vk+1(cb + 1, x, y) = f(cb, x, y)− f(cb + 1, x, y)

+λ1 (1x<cb [Vk(cb, x+ 1, y)−Vk(cb + 1, x+ 1, y)]

+1x=cb,y<c−cb [Vk(cb, x, y+ 1)−Vk(cb + 1, x+ 1, y)])

+λ2

(
1y<c−(cb+1) [Vk(cb, x, y+ 1)−Vk(cb + 1, x, y+ 1)]

+1y=c−(cb+1) [Vk(cb, x, y+ 1)−Vk(cb + 1, x, y)]
)

+xµb [Vk(cb, x− 1, y)−Vk(cb + 1, x− 1, y)] + yµs [Vk(cb, x, y− 1)−Vk(cb + 1, x, y− 1)]

+ (1−λ1−λ2−xµb− yµs) [Vk(cb, x, y)−Vk(cb + 1, x, y)] .

Each line on the right hand side of this equation is positive. Lines 1, 2, 4, 6, and 7 are positive since f and

Vk satisfy (10). Line 3 is positive since Vk satisfies (13). Finally, Line 5 is positive since Vk satisfies (14). This

proves that Vk+1 satisfies (10).

Relation (11). For 0≤ x≤ cb ≤ c, and 0≤ y≤ c− (cb + 1), we have

Vk+1(cb, x, y+ 1)−Vk+1(cb, x, y) = f(cb, x, y+ 1)− f(cb, x, y)

+λ1 (1x<cb [Vk(cb, x+ 1, y+ 1)−Vk(cb, x+ 1, y)]

+1x=cb,y<c−(cb+1) [Vk(cb, x, y+ 2)−Vk(cb, x, y+ 1)]

+1x=cb,y=c−(cb+1) [Vk(cb, x, y+ 1)−Vk(cb, x, y+ 1)]
)

+λ2

(
1y<c−(cb+1) [Vk(cb, x, y+ 2)−Vk(cb, x, y+ 1)] +1y=c−(cb+1) [Vk(cb, x, y+ 1)−Vk(cb, x, y+ 1)]

)
+xµb [Vk(cb, x− 1, y+ 1)−Vk(cb, x− 1, y)] + yµs [Vk(cb, x, y)−Vk(cb, x, y− 1)] +µsVk(cb, x, y)

+ (1−λ1−λ2−xµb− (y+ 1)µs) [Vk(cb, x, y+ 1)−Vk(cb, x, y)]−µsVk(cb, x, y).

Each line on the right hand side of this equality is positive as f and Vk satisfy (11). Note that the third line

is zero and that the terms proportional with µs at the two last lines sum up to zero. This proves that Vk+1

satisfies (11).

Relation (13). For 0≤ x≤ cb ≤ c, and 0≤ y≤ c− (cb + 1), we have

Vk+1(cb, x, y+ 1)−Vk+1(cb + 1, x+ 1, y) = f(cb, x, y+ 1)− f(cb + 1, x+ 1, y)

+λ1 (1x<cb [Vk(cb, x+ 1, y+ 1)−Vk(cb + 1, x+ 2, y)]

+1x=cb,y<c−(cb+1) [Vk(cb, x, y+ 2)−Vk(cb + 1, x+ 1, y+ 1)]

+1x=cb,y=c−(cb+1) [Vk(cb, x, y+ 1)−Vk(cb + 1, x+ 1, y)]
)
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+λ2

(
1y<c−(cb+1) [Vk(cb, x, y+ 2)−Vk(cb + 1, x+ 1, y+ 1)]

+1y=c−(cb+1) [Vk(cb, x, y+ 1)−Vk(cb + 1, x+ 1, y)]
)

+xµb [Vk(cb, x− 1, y+ 1)−Vk(cb + 1, x, y)]−µbVk(cb + 1, x, y)

+ yµs [Vk(cb, x, y)−Vk(cb + 1, x+ 1, y− 1)] +µsVk(cb, x, y)

+ (1−λ1−λ2− (x+ 1)µb− (y+ 1)µs) [Vk(cb, x, y+ 1)−Vk(cb + 1, x+ 1, y)]

+µbVk(cb, x, y+ 1)−µsVk(cb + 1, x+ 1, y)

≥ µb (Vk(cb, x, y+ 1)−Vk(cb + 1, x, y)) +µs(Vk(cb, x, y)−Vk(cb + 1, x+ 1, y))

= (µb−µs) (Vk(cb, x, y+ 1)−Vk(cb + 1, x, y))

+µs([Vk(cb, x, y)−Vk(cb + 1, x, y)] + [Vk(cb, x, y+ 1)−Vk(cb + 1, x+ 1, y)])

All terms on the right hand side of the equality are positive since they all satisfy (13). The remaining terms

proportional with µs and µb are kept after the inequality sign. Next, by rewriting these elements into a first

part proportional with µb−µs and another part proportional with µs, we prove that Vk+1 satisfies (13). The

term proportional with µb−µs is positive as Vk satisfies (14). The term proportional with µs is also positive

since Vk satisfies (10) and (13).

This proves that if Vk ∈ C′ and µb ≥ µs, then Vk+1 ∈ C′. The condition µb ≥ µs can be seen as a restriction

of our result. Alternatively, we can show (12) independently from any conditions on the system parameters.

However, this relation is rarely satisfied by the cost functions.

Relation (12). For 0≤ x≤ cb ≤ c, and 0≤ y≤ c− (cb + 1), we have

Vk+1(cb, x, y)−Vk+1(cb + 1, x+ 1, y) = f(cb, x, y)− f(cb + 1, x+ 1, y)

+λ1 (1x<cb [Vk(cb, x+ 1, y)−Vk(cb + 1, x+ 2, y)]

+1x=cb,y<c−(cb+1) [Vk(cb, x, y+ 1)−Vk(cb + 1, x+ 1, y+ 1)]

+1x=cb,y=c−(cb+1) [Vk(cb, x, y+ 1)−Vk(cb + 1, x+ 1, y)]
)

+λ2

(
1y<c−(cb+1) [Vk(cb, x, y+ 1)−Vk(cb + 1, x+ 1, y+ 1)]

+1y=c−(cb+1) [Vk(cb, x, y+ 1)−Vk(cb + 1, x+ 1, y)]
)

+xµb [Vk(cb, x− 1, y)−Vk(cb + 1, x, y)]

+ yµs [Vk(cb, x, y− 1)−Vk(cb + 1, x+ 1, y− 1)]

+ (1−λ1−λ2− (x+ 1)µb− yµs) [Vk(cb, x, y)−Vk(cb + 1, x+ 1, y)]

+µb (Vk(cb, x, y)−Vk(cb + 1, x, y)) .

Again, the right hand side of this Equation is positive. Lines 1, 2, 3, 5, 7, 8, and 9 are positive since Vk
satisfies (12). Lines 4 and 6 are positive since Vk satisfies (13). Line 10 is positive since Vk satisfies (10). This

proves that Vk+1 satisfies (12) and finishes the proof of the theorem.
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