
Transient analysis of a Markovian queue with deterministic

rejection

Benjamin Legros

Ecole de Management de Normandie, Laboratoire Métis, 64 Rue du Ranelagh, 75016 Paris, France

benjamin.legros@centraliens.net

Abstract

We analyze the transient behavior of the M/M/1+D queue. Considering an Erlang distribution

for customers’ waiting time, we approximate the real system by a Markov chain. We obtain the

Laplace Transform of the transient probabilities in the approximated model and the Laplace

transform of the main performance measures for the real system. We next analyze the busy

period of this queue. One interesting insight is that the busy period of the unstable M/M/s

queue has a finite coefficient of variation.

Keywords: Transient analysis; performance evaluation; deterministic rejection; queueing model;

Erlang approximation

1 Introduction

Most results in the queuing theory and its applications are for the stationary regime. They charac-

terize the system when the time from initialization becomes very large which renders the impact of

the initial conditions negligible. The popularity of the stationary analysis comes from its simplicity.

By solving a set balance equations, the stationary performance measures of many classical queues

(M/M/1, M/G/1, M/M/c, ...) are known explicitly and have relatively simple forms. In practice,

the analysis of the stationary regime makes sense in some contexts. For instance in call centers, it

is appropriate to assume that a system with constant parameters achieves a steady-state quickly

within short-half hour or hour-intervals [15, 13].

Nevertheless, the stationary analyses are inappropriate in many situations if the time from

initialization is not large enough. This is particularly the case when there is a definite closing time

and when the service times are long. For instance, the number of patients seen by a physician

during a working period is not sufficient to assume that a stationary regime is achieved. Even in

call centers, the recent improvements in customers identification via data analysis reduce the value

of the stationary analysis where customers are seen as a uniform flow. Therefore, the transient
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analysis is highly valuable for a better understanding of queueing systems. However, due to the

complexity of the transient regime, available results are usually restricted.

In this article, we consider a single server queue with infinite capacity, starting initially empty,

a first-come-first-served discipline, an exponential service time with service rate µ and a Poisson

arrival process with rate λ. In addition, we assume that a customer is automatically rejected if her

actual waiting time reaches the deterministic threshold τ . This corresponds to Web applications

where a timeout threshold is set by administrators [32] or call centers where customers are invited

to be called back later at a given waiting time [24]. This queue is referred to as the M/M/1+D

queue. To the best of our knowledge, the transient analysis of this queue hasn’t yet been done.

Note that our results can lead to the transient performance measures in the multi-server case or

with different initial conditions. These extensions are presented in the Online Supplement.

The difficulty for the analysis of this queue is the presence of a non-exponential duration;

the rejection time. The system therefore cannot be modeled by a simple Markov chain where a

state of the system corresponds to the number of customers. To overcome this difficulty, we first

approximate the waiting time of the first customer in line in the queue by an Erlang distribution

as in [22] and [25]. This allows us to represent the system evolution by a Markov chain. As

the parameters of the Erlang distribution tend to infinity, the approximated model converges to

the real one. After writing the balanced equations, we introduce the z-transform of the transient

probabilities. We next obtain an explicit solution for the Laplace transform of this function which in

turn allows us to derive the Laplace transform of the relevant performance measures; the probability

of an empty system, the probability of rejection, the expected waiting time and the probability of

waiting more than a given threshold. Finally, with a similar approach, we analyze the busy period

of the M/M/1+D queue. We deduce from this analysis that the busy period of the unstable M/M/1

queue has a finite coefficient of variation when λ > µ.

Structure of the article. The remainder of this paper is structured as follows. We conclude

this section with a literature survey. Section 2 explains the system modeling. Section 3 determines

the explicit Laplace transform of the transient probabilities. Section 4 computes the performance

measures of the real system. Section 5 illustrates the applicability of our results. Finally, Section

6 investigates the busy period of the M/M/1+D queue. In the Online Supplement, we present the

multi-server case, the performance measures under different initial conditions and detailed proofs
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for the main results.

Literature review. In the queueing literature, the analyses of queues under a transient regime

have a long history. The M/M/1 queue is the first studied queue [23, 10, 11]. The transient

queue-length distribution is explicitly known in terms of modified Bessel functions of the first

kind. However, the complexity of the involved expression makes it complicated to obtain insights

for this queue. Further investigations have therefore been devoted to a better understanding of

this queue. For instance, [2] and [3] establish a transform factorization that facilitates developing

approximations for the moments of the queue length. Several approaches for the analysis of the

M/M/1 queue have been considered. We refer to [30] for a review of the main results for the

computation of the performance measures of the M/M/1 queue. The most popular approach has

been the one of of [10] involving generating functions for the partial differential equation. For

instance, [28] apply this approach for the explicit performance measures of the M/M/1 queue with

finite capacity. The extension from the M/M/1 to the M/G/1 queue has been extensively studied.

[29] is the first to provide integral expressions of the performance measures for this queue. Later,

[4] investigate the moments of this queue. A moment is characterized in terms of a differential

equation involving lower moment functions and the time-dependent server occupation probability.

Different variations of the M/G/1 have been studied. [14] determine an analytical expression of

the probability distribution of the M/D/1/N queue initialized at an arbitrary deterministic state.

[16] consider a particular M/G/1 queue with an Erlang service time distribution. [31] consider the

M/G/1 retrial queue with disasters and service failures. [20] tackle the finite buffer M/G/1 queue

with server vacations. In addition, the M/G/1 queue has been considered under a processor sharing

discipline [21, 18]. For the multi-server setting, [19] evaluate the transient behavior of the M/M/s

queue and show the implications of this analysis for simulations. Later, [26] obtain a solution for the

M/M/s queue from which the stationary behavior can be easily derived. Including abandonment or

rejection renders the performance evaluation difficult. Therefore, most studies of such queues have

been done under stationary assumptions [27, 8, 9]. Considering the transient analysis, we mention

[6] for the performance measures of the M/M/s+M queue and [7] for the study of its busy period.
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2 Model description

We define a continuous time Markov chain in which we approximate the waiting time of the first

customer in line (FIL) by an Erlang distribution with rate γ per phase. The total number of phases

of this distribution is not known beforehand. This is determined by service completion times and

the FIL rejection time. This non-traditional approach for the definition of the system state has

been first proposed in [22] without abandonment and next extended in [25] with abandonment.

More precisely, we denote by x a state of the system, where −1 ≤ x ≤ n. State x = −1

corresponds to an empty system, State x = 0 corresponds to a busy server with an empty queue,

and states with 0 < x ≤ n correspond to a situation where the FIL is at phase time x. We choose

x, n and γ such that x
γ

∆
= t and n

γ
∆
= τ . This ensures that as x, n, and γ tend to infinity, the random

variable which represents the discretized waiting phase time of the FIL converges to a deterministic

elapsing of time t (0 ≤ t ≤ τ). This in turn leads to an exact analysis.

We now explain the transition structure of the Markov process. Assume that the FIL is in

waiting phase x, for x > 0. Since the discipline of service is first-come-first-served, a service

completion (see transition Type 3) results in removing the FIL from the queue. Moreover, since

we consider a deterministic rejection time, a rejection (see transition Type 4) can also only happen

to the FIL. Therefore, after a service completion or a rejection, the new FIL (if any) is in a lower

waiting phase than the initial one. We denote by h the number of waiting phases between the FIL

just before and the FIL just after a service completion or a rejection (0 ≤ h ≤ x). The transition

probability, rx,x−h, from state x > 0 to state x − h can be found in [25] (Table 1, line 4) by

rx,x−h =
(

λ
λ+γ

)(
γ

λ+γ

)h
for 0 ≤ h < x, and by rx,0 =

(
γ

λ+γ

)x
. The four possible transitions in the

Markov chain are the following:

1. An arrival with rate λ with an empty queue (x = −1, 0), which changes the state to x+ 1. If

initially x = −1, then the server becomes busy. Otherwise if initially x = 0, the FIL entity is

created in phase time 1.

2. A phase increase with rate γ while the system is not empty and the FIL is not in waiting

phase n (0 < x < n), which changes the state to x+1. The phase time of the FIL is increased

by 1.

3. A service completion with rate µrx,x−h while the queue is not empty (0 < x ≤ n, 0 ≤ h ≤ x),
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which changes the state to x− h, that is, the new FIL is in phase time x− h if x− h > 0 or

the queue is empty if x− h = 0.

4. A phase increase with rate γrn,n−h while the FIL in the queue is in waiting phase n (x =

n, 0 ≤ h ≤ n), which changes the state to n−h, that is, the new FIL is in waiting phase n−h

if n− h > 0 or the queue is empty if n− h = 0.

The transition structure defined above determines a Markov chain for which we are interested

in the transient behavior. We denote by πx(t), the transient probability to be in state x at time

t ≥ 0 and assume that the system starts empty; π−1(0) = 1. In order to simplify the notations,

we write πx instead of πx(t) and denote by q the ratio γ
λ+γ . The differential-difference equations

governing the phase time of the FIL are given in Equation (1) as

∂π−1

∂t
= −λπ−1 + µπ0, (1)

∂π0

∂t
= −(λ+ µ)π0 + λπ−1 + µ

n∑
k=1

qkπk + γqnπn,

∂π1

∂t
= −(γ + µq)π1 + µ

n−1∑
k=1

(1− q)qkπ1+k + γ(1− q)qn−1πn + λπ0,

∂πx
∂t

= −(γ + µq)πx + µ

n−x∑
k=1

(1− q)qkπx+k + γ(1− q)qn−xπn + γπx−1, for, 2 ≤ x ≤ n− 1,

∂πn
∂t

= −(γ + µ)qπn + γπn−1.

3 Laplace Transforms of the transient probabilities πx

In Theorem 1, we provide explicit expressions of the Laplace Transform of the transient probabil-

ities. To prove Theorem 1, we introduce the probability generating function, defined as P (z, t) =
n∑
x=0

πxz
x. This function is related to the πx’s via πx = 1

x!
∂xP (z,t)
∂zx |z=0, for 0 ≤ x ≤ n. Using Equation

(1), we determine the differential equation satisfied by P (z, t). We define the Laplace Transform

(LT) of a function f(z, t) (z ∈ C, t ≥ 0) as follows:

f∗(z, y) =

∫ ∞
0
e−ytf(z, t) dt,

for y ∈ C, with Re (y) > 0. This allows us to express the LT of P (z, t), denoted by P (z, y)∗, as a

function of π∗−1, π∗0, and π∗n. The zeros of the denominator of P (z, y)∗ are next used to express π∗0,
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and π∗n as functions of π∗−1. Finally, the first line of Equation (1) leads to the expression of π∗−1.

Theorem 1 We have

πx∗ =
(y(1− q) + λ(1− z1))π∗0 − (1− q)(1− yπ∗−1)

γ(z2 − z1)zx1
(2)

+
−(y(1− q) + λ(1− z2))π∗0 + (1− q)(1− yπ∗−1)

γ(z2 − z1)zx2
, for 0 < x ≤ n, with

π∗0 =
1

y

λγ[(1− z1)zn1 − (1− z2)zn2 ]

[(γ − λ)(y + λ) + γµ− γ(y + µ+ γ)z1]zn1 − [(γ − λ)(y + λ) + γµ− γ(y + µ+ γ)z2]zn2
, and

(3)

π∗−1 =
1

y

(
1− λ[(γ(1− z1)− λ)zn1 − (γ(1− z2)− λ)zn2 ]

[(γ − λ)(y + λ) + γµ− γ(y + µ+ γ)z1]zn1 − [(γ − λ)(y + λ) + γµ− γ(y + µ+ γ)z2]zn2

)
,

(4)

where

z1 =
1

2γ
[y + γ + q(µ+ γ) +

√
(y + γ + q(µ+ γ))2 − 4γq(y + µ+ γ)], and,

z2 =
1

2γ
[y + γ + q(µ+ γ)−

√
(y + γ + q(µ+ γ))2 − 4γq(y + µ+ γ)].

Proof. In order to derive P (z, t), we multiply the xth differential equation in Equation (1) by zx

(0 ≤ x ≤ n). We subsequently sum up over all x to obtain a single differential equation leading

after some algebra to

∂(P (z, t) + π−1)

∂t
= −(1− z)

[
γ + µ

q

q − z

]
P (z, t) + (1− z)µ q

q − z
P (q, t) + (γ − λ)(1− z)π0 (5)

+ γ
(1− z)(qn+1 − zn+1)

q − z
πn.

From the second line of Equation (1), we get

µP (q, t) =
∂(π0 + π−1)

∂t
+ (λ+ µ)π0 − γqnπn.
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By replacing the expression of P (q, t) in Equation (5), we obtain

∂(P (z, t) + π−1)

∂t
= −(1− z)

[
γ + µ

q

q − z

]
P (z, t) +

q(1− z)
q − z

∂(π0 + π−1)

∂t
(6)

+
(1− z)(qµ+ λz + γ(q − z))

q − z
π0 − γ

zn+1(1− z)
q − z

πn.

Applying the LT to Equation (6) and using P (z, 0) = π0(0) = 0 and π−1(0) = 1, we obtain

P (z, y)∗ = −
γ(1− z)zn+1π∗n + (1− z)((γ − λ)z − q(y + µ+ γ))π∗0 + (1− q)z(1− yπ∗−1)

γz2 − (y + q(µ+ γ) + γ)z + q(y + µ+ γ)
. (7)

The denominator of P (z, y)∗ is a quadratic in z. It has two zeros, z1 and z2, as defined in Theorem

1. The values z1 and z2 are also zeros of the numerator of P (z, y)∗. This can be seen by multiplying

P (z, y)∗ by its denominator in Equation (7). Therefore, we deduce that

γ(1− zi)zn+1
i π∗n + (1− zi)(γz2

i − (y + q(µ+ γ) + λ)zi)π
∗
0 + (1− q)zi(1− yπ∗−1) = 0,

for i = 1, 2. These two equations allow us to derive π∗n and π∗0 as functions of π∗−1. One then may

write

π∗0 =
1− yπ∗−1

y

(1− z1)zn1 − (1− z2)zn2
(1− z1 − λ/γ)zn1 − (1− z2 − λ/γ)zn2

, and,

π∗n =
1− yπ∗−1

y

λ(z2 − z1)

γ[(1− z1 − λ/γ)zn1 − (1− z2 − λ/γ)zn2 ]
.

The LT of the first line of Equation (1) is yπ∗−1 − 1 = −λπ∗−1 + µπ∗0. This equation together with

the expression of π∗0 given above leads to π∗−1 and π∗0 as given in Theorem 1. There remains to

determine the other probabilities (as functions of y) using π∗x = 1
x!
∂xP (z,y)∗

∂zx |z=0. We rewrite P ∗(z, y)

as

P ∗(z, y) = − (1− z)zn+1

(z − z1)(z − z2)
π∗n +

γ − λ
γ

π∗0 +
−z1(y(1− q) + λ(1− z1))π∗0 + (1− q)z1(1− yπ∗−1)

γ(z − z1)(z2 − z1)

+
z2(y(1− q) + λ(1− z2))π∗0 − (1− q)z2(1− yπ∗−1)

γ(z − z2)(z2 − z1)
.

The xth derivative of the term proportional with π∗n evaluated in z = 0 is equal to zero for x ≤ n

because zi 6= 0, for i = 1, 2 and the xth derivative of zn+1 at z = 0 is zero for x ≤ n. Using
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∂x(z−zi)−1

∂zx |z=0 = − x!
zx+1
i

, we deduce the expression of π∗x, for 0 < x ≤ n. 2

4 Performance measures of the real system

The LT of the performance measures for the real system are obtained in Theorem 2 by letting

γ tend to infinity. We consider the probability of an empty system (or an idle server), π−1, the

proportion of customers who are rejected, denoted by PR, the expected waiting time, denoted by

E(W ), and the probability of waiting longer than a time threshold w, denoted by P (W > w), with

0 < w < τ .

Theorem 2 We have

π∗−1 =
1

y

(
1−

λ
(
y1 − y2e

−(y1−y2)τ
)

y1(λ+ µ+ y)− λµ− (y2(λ+ µ+ y)− λµ)e−(y1−y2)τ

)
,

P ∗R =
e−τ(y1−λ)

y

λ(y1 − y2)

y1(λ+ µ+ y)− λµ− (y2(λ+ µ+ y)− λµ)e−(y1−y2)τ
,

E(W )∗ =
µ

y2

y1 − (y + µ)− (y2 − (y + µ))e−(y1−y2)τ + (τλy/µ− 1)(y1 − y2)e−τ(y1−λ)

y1(λ+ µ+ y)− λµ− (y2(λ+ µ+ y)− λµ)e−(y1−y2)τ
, and,

P (W > w)∗ =
−y1 + y + µ+ λ+ π∗−1((y + λ)(y1 − y − λ)− yµ)

(y1 − λ)(y1 − y2)
(e(λ−y1)w − e(λ−y1)τ )

−
−y2 + y + µ+ λ+ π∗−1((y + λ)(y2 − y − λ)− yµ)

(y2 − λ)(y1 − y2)
(e(λ−y2)w − e(λ−y2)τ )

+
e−τ(y1−λ)

y

λ(y1 − y2)

y1(λ+ µ+ y)− λµ− (y2(λ+ µ+ y)− λµ)e−(y1−y2)τ
.

Proof. Using a Taylor expansion of z1, z2 and zni , as γ tends to infinity, we get

z1 = 1 +
1

2γ

(
y + µ− λ+

√
(y + λ+ µ)2 − 4λµ

)
+ o(1/γ) = 1 +

y1 − λ
γ

+ o(1/γ),

z2 = 1 +
1

2γ

(
y + µ− λ−

√
(y + λ+ µ)2 − 4λµ

)
+ o(1/γ) = 1 +

y2 − λ
γ

+ o(1/γ), and,

zni = e(yi−λ)τ + o(1/γ), for i = 1, 2.

We observe that y1/λ and y2/λ are the roots of the denominator of the Laplace transform of the

generating function in an M/M/1 queue (e.g., see [17], Equation (2.57), p.99). This directly leads

to the expression of π∗−1.

At time t, a customer can be rejected only from state x = n. The probability to be in state
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n is πn, the number of rejected customers from this state during an interval of time dt is γdt, the

number of arrivals during the same interval is λdt. Therefore, the proportion of customers who are

rejected from the system can be obtained as PR = lim
γ−→∞

γ
λπn.

Let us now consider the performance related to the waiting time in the queue. The embedded

Markov chain at service initiations and rejection times is considered. In this way, we consider the

virtual waiting time of a customer who would initiate a service or would be rejected at time t.

Service initiations occur at µ-transitions from states 0 < x ≤ n. Rejections occur at γ-transitions

from state x = n. The expected duration of a waiting phase is 1/γ. Therefore, the virtual expected

waiting time of served or rejected customers at time t is

E(W ) = lim
γ−→∞

(
µ

λ

n∑
x=1

x

γ
πx +

γ

λ

n

γ
πn

)
= lim

γ−→∞

(
µ

λ

∂P (z,t)
∂z |z=1

γ
+
γ

λ

n

γ
πn

)
.

We therefore deduce the LT of the expected waiting time from

E(W )∗ = lim
γ−→∞

(
µ

λγ

∂P ∗(z, y)

∂z
|z=1 + τ

γ

λ
π∗n

)
.

We now consider the probability of waiting more than a time threshold w such that 0 < w < τ

irrespective if the customer is rejected or served; P (W > w). We can decompose this probability

depending if a customer is served or rejected;

P (W > w) = (1− PR)P (W > w|Service) + PRP (W > w|Rejection).

Since rejections only occur after τ time units and w < τ , we have P (W > w|Rejection) = 1. Let us

now focus on served customers. Consider a customer served from waiting phase x (0 < x ≤ n). This

customer has stayed in the queue during x γ-phases. The probability that an Erlang distribution

with x phases and rate γ per phase exceeds w is e−γw
x−1∑
k=0

(γw)k

k! . Therefore,

(1−PR)P (W > w|Service) = lim
γ−→∞

(
µ

λ

n∑
x=1

πxe
−γw

x−1∑
k=0

(γw)k

k!

)
= lim

γ−→∞

(
µe−γw

λ

n−1∑
x=0

(γw)x

x!

n∑
k=x+1

πk

)
.

From Equation (2), we observe that π∗x = A1
zx1
− A2

zx2
, with Ai =

(y(1−q)+λ(1−zi))π∗
0−(1−q)(1−yπ∗

−1)

γ(z2−z1) ,
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for i = 1, 2. Moreover,
n∑

k=x+1

1
zki

=
z−xi −z

−n
i

zi−1 , for i = 1, 2. This leads to

((1− PR)P (W > w|Service))∗ = lim
γ−→∞

(
µe−γw

λ

2∑
i=1

(−1)i+1 Ai
zi − 1

n−1∑
x=0

(
(γw/zi)

x

x!
− z−ni

(γw)x

x!

))
.

By letting γ tend to infinity, we obtain P (W > w)∗. 2

5 Comments and Numerical Illustration

The transient performance measures can be computed using a Laplace transform inversion. We

use the speed up version of the Gaver-Stehfes algorithm presented in [12], page 144, equation (7.7),

where a given function f(t) is approximated by

ln(2)

t

N∑
n=1

Kn · f∗
(
n

ln(2)

t

)
,

where N is even and

Kn = (−1)n+N
2

min(n,N/2)∑
k=[n+1

2 ]

kN/2(2k)!

(N/2− k)!k!(k − 1)!(n− k)!(2k − n)!
.

One difficulty to apply this formula in practice is to determine a sufficiently high value for N and a

sufficiently high number of digits for the values of Kn in order to obtain a sufficiently accurate value

for the function to invert. [1] investigated numerically the precision produced as a function of the

parameter N . From extensive experimentation, they conclude that about 0.45×N significant digits

are sufficient to obtain a relative error of the order of 10−0.45N . However, their result depends on

the transform. In our case, the complexity of the formulas requires higher values for N in particular

in the zone where the elapsed time since the origin is close to the rejection threshold. Alternative

methods for numerical Laplace transform inversion can be found in [5].

In Figure 1, we derive the main performance measures as a function of the time elapsed since the

origin. From this and other numerical experiments, we observe that the M/M/1+D queue reaches

a close to stationary behavior quicker than the corresponding M/M/1 queue. The justification

of this observation is related to the reduction of the waiting time variability with a low rejection

threshold.
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Figure 1: Numerical results (µ = 1, τ = 1)

The Laplace transforms of the performance measures allow us to compute their stationary

expressions using the Final Value Theorem (e.g., see [12], Theorem 2.6, pages 40-41). These

are obtained by computing the limit as y tends to 0 of the product of y with the LT of the

wanted performance measure. This leads to π∞−1 = 1−a
1−a2e−τ(µ−λ) , P∞R = a(1−a)e−τ(µ−λ)

1−a2e−τ(µ−λ) , E(W )∞ =

1
µ
a(1−(1+aτ(µ−λ))e−τ(µ−λ))

(1−a)(1−a2e−τ(µ−λ)) , and P (W > w)∞ = a(e−w(µ−λ)−ae−τ(µ−λ))
1−a2e−τ(µ−λ) , where a = λ/µ.

6 Busy Period Analysis

A busy period is the time that elapses between two consecutive arrivals finding an empty system.

In this section, we determine the mean and the LT of a busy period in an M/M/1+D queue. These

results can be extended to the full busy period of the M/M/s+D queue defined as a period com-

mencing when an arriving customer finds exactly one idle server and ending at the first departure

epoch leaving behind exactly one idle server. We use the same state definition as in the previous

sections. Let the random variable Cx be the time till the system is empty again if the FIL is in

state x (1 ≤ x ≤ n) or if only one customer is in the system (x = 0). Since a busy period starts
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when the first customer after an idle period arrives and it ends when the system is empty again,

C0 is the length of a busy period. Using the transition structure defined in Section 2, we get

C∗0 (y + µ+ λ) = λC∗1 + µ, (8)

C∗x(y + µ+ γ) = γC∗x+1 + µqxC∗0 + µ(1− q)
x∑
k=1

qx−kC∗k , for 1 ≤ x < n,

C∗n(y + µ+ γ) = (µ+ γ)qnC∗0 + (µ+ γ)(1− q)
n∑
k=1

qn−kC∗k ,

In Theorem 3, we give the LT of C0, denoted by C∗0 , the expected duration of the busy period,

denoted by E(C0) and the variance of the busy period, denoted by V (C0). The proof follows a

similar approach as the analysis of Section 3. The details are given in the Online Supplement.

Theorem 3 We have

C∗0 = µ

[
λ

(
1− µ(y2 − µ+ (µ− y1)e−τ(y1−y2))

y1(y2 − µ) + y2(µ− y1)e−τ(y1−y2)

)
+ µ+ s

]−1

,

E(C0) =
µ− λe−τ(µ−λ)

µ(µ− λ)
, and,

V (C0) =
µ2(µ+ λ)− 2λµ(µ− λ)(2 + (λ+ µ)τ)e−τ(µ−λ) − λ2(µ+ λ)e−2τ(µ−λ)

µ2(µ− λ)3
.

In Figure 2, we illustrate the impact of the deterministic rejection threshold τ on the expected

duration of the busy period and the coefficient of variation of the busy period (i.e., it is the ratio

between the standard deviation and the expected duration of the busy period). As expected, these

two measures increase with τ . As τ tends to infinity, we obtain the results for the M/M/1 queue.

The expected duration tends to 1
µ−λ if µ > λ and to infinity otherwise (instability). The coefficient

of variation tends to
√

λ+µ
|µ−λ| in all cases. This explains the relative position of the curves in Figure

(2(b)) and provides an interesting property for the unstable M/M/1 queue. For low values of τ ,

the coefficient of variation increases with λ. For larger values of τ , either λ < µ and the system

behaves close to a stable M/M/1 queue or λ > µ and most customers are rejected at τ time units.

In both cases the coefficient of variation is controlled. The uncertainty on the duration of the busy

period is maximized when λ = µ. This may explain the relative position of this curve compared to

the others.

12
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(a) Expected duration of the busy period
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(b) Coefficient of variation of the busy period

Figure 2: Numerical results (µ = 1)
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