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Abstract

We consider a single server queueing system where a finite number of customers arrive over

time to receive service. Arrivals are driven by appointments, with a scheduled appointment

time associated with each customer. However, customers are not necessarily punctual and may

arrive either earlier or later than their scheduled appointment times or may not show up at all.

Arrival times relative to scheduled appointments are random. Customers are not homogeneous

in their punctuality and show up behavior. The time between consecutive appointments is al-

lowed to vary from customer to customer. Moreover, service times are assumed to be random

with a γ−Cox distribution, a class of phase-type distributions known to be dense in the field of

positive distributions. We develop both exact and approximate approaches for characterizing

the distribution of the number of customers seen by each arrival. We show how this can be used

to obtain the distribution of waiting time for each customer. We prove that the approxima-

tion provides an upper bound for the expected customer waiting time when non-punctuality is

uniformly-distributed. We also examine the impact of non-punctuality on system performance.

In particular, we prove that non-punctuality deteriorates waiting time performance regardless

of the distribution of non-punctuality. In addition, we illustrate how our approach can be used

to support individualised appointment scheduling.

Keywords: appointment-driven arrivals, finite arrivals, customer punctuality, customer no-

shows
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1 Introduction

There are numerous service systems where the arrivals of customers are driven by scheduled ap-

pointments. Examples include arrivals to healthcare facilities, government agencies (e.g., social

services), the offices of tax and financial service providers, academic advising offices at universities,

restaurants and wellness centers, just to name a few1. Despite this prevalence, analytical tools

for the performance evaluation of these systems are relatively limited. Existing approaches from

queueing theory mainly rely on steady state analysis of queueing systems with exogenous arrival

processes. There are several important differences between queueing systems with exogenous ar-

rival processes and systems with appointment-driven arrivals (ADA). In particular, systems with

ADA are characterised by (1) a finite number of customers (e.g., the set of customers who have

been scheduled at a clinic in a given day), so that steady-state analysis cannot be applied2, (2)

arrivals that are in part determined by known scheduled appointment times, (3) appointment times

that may not be equally spaced, and (4) the possibility of customer non-punctuality and no-shows.

These differences can be further compounded in settings in which customers are heterogeneous in

their behaviors in terms of punctuality and likelihood of show up.

In this paper, we consider such a system. In particular, we consider a system with a finite

number of customers and a single server, where each customer has a scheduled appointment but

customers are not necessarily punctual and may arrive earlier or later than their appointment times.

We allow for appointments to be arbitrarily spaced so that they are not necessarily equally spaced.

To achieve a better understanding of how non-punctuality and no-shows affect the system, we allow

for non-punctuality, a random variable with a general distribution, and the probability of show up

to be customer-specific. The service times are assumed to be random with a γ−Cox distribution, a

class of phase-type distributions known to be dense in the field of positive distributions [23]. (For

ease of presentation, we first consider the case of the exponential distribution, a special case of a

γ−Cox distribution.)

We develop an exact analytical approach that allows us to compute the distribution of waiting

time for the customer with the n-th appointment from which various moments can be readily

computed. The approach hinges on a recursive relationship between the conditional probability

pn,i of customer n finding, upon arrival (if the customer were to show up), i customers already in

1With the advent of social distancing, it is likely that appointment driven arrivals will become even more prevalent.
2Steady state analysis can of course provide useful insights in some cases; see for example [12, 20, 36].
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the system and the vector of conditional probabilities pn−1,j for j = 1, ..., n − 2 similarly defined

for customer n− 1.

We illustrate the usefulness of our approach by describing numerical results that examine the

impact of not accounting for non-punctuality and no-shows. We provide analytical support by

proving that non-punctuality always deteriorates waiting time performance regardless of the dis-

tribution of non-punctuality. We also illustrate how our approach can be used to support online

appointment scheduling3 where the objective is to minimize completion time subject to a service

level constraint on waiting time (scheduling that takes into account the punctuality and no-show

behavior of each customer) and compare the performance of such a scheduling scheme to a scheme

where all appointment times are equally spaced.

A difficulty in carrying out the exact approach is the computation involving the distribution of

customer inter-arrival times, which relies on a convolution of the probability distribution functions

of the arrival times of customers n and n− 1, conditional on customer n− 1 finding j customers in

the system. Hence, while the exact approach is feasible for small to moderately sized problems, it

is computing intensive for large problems. To address this limitation, we describe an approximate

approach that is computationally efficient. The approximation retains all the steps of the exact

approach, except for the one involving computing the distribution of customer inter-arrival times

where conditional probabilities are replaced by their unconditional counterparts. We show that the

approximation provides significant savings in computational effort with a relatively modest sacrifice

in accuracy. We prove, using the theory of majorization, that the approximation provides an

upper bound for the exact expected customer waiting time when the non-punctuality is uniformly-

distributed.

The rest of the paper is organized as follows. In Section 2, we discuss related literature. In

Section 3, we describe the problem and the analytical approach. In Section 4, we examine the impact

of non-punctuality on performance. In Section 5, we illustrate how our performance evaluation

approach can be embedded in an optimization problem to obtain optimal schedules. In Section

6, we describe the approximate approach and assess its performance. In Section 7, we provide

concluding comments.

3We use the term online to refer to the realistic setting where customers are assigned an appointment time at the
time they request one, taking into account previous appointments and the characteristics of the associated customers.
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2 Related literature

There is an extensive literature on systems where arrivals are determined by appointments times.

The typical application is appointment scheduling in healthcare. We refer the reader to Cayirli

and Veral [3] and Gupta and Denton [10] for surveys of early contributions in this area and Ahmad

et al. [1] and Zacharias and Yunes [44] for a review of more recent literature. Zacharias and

Yunes [44] provide a useful classification of the literature based on features such as service time

distribution, no-shows, non-punctuality, emergency demand and customer heterogeneity. In much

of this literature, the focus is on determining schedules that can effectively balance the tradeoff

between resource utilization (e.g., that of medical staff) and customer (patient) delay. In particular,

a typical formulation is one that minimizes the sum of overtime cost and customer delay cost.

Two main streams of literature can be distinguished: a stream that focuses on inter-day dy-

namics and a stream that focuses on intra-day dynamics. The first stream accounts for the time

between when a customer makes a request for an appointment and the date of the appointment,

which may be days later. This time is often referred to as indirect waiting time since the customer

may be able to carry on with other activities prior the day of the appointment. The second stream

focuses on the waiting time, typically measured in minutes, experienced by the customer when the

customer shows up to the appointment. This waiting time is often referred to as direct waiting time.

Our paper belongs to this second stream. Therefore, in the remainder of this section, we limit our

discussion to this stream and refer the reader to Green and Savin [9], Zacharias and Armony [42],

and the references therein for a discussion of the first stream. Exploring the relationship between

the inter-day and intra-day dynamics is of course important for many applications and is an area

that merits further study; see for example Feldman et al. [8].

The literature on intra-day dynamics can be divided into two sub-streams: one assumes cus-

tomers are punctual and one allows for customer non-punctuality. We review relevant papers below,

focusing on those that are most closely related.

Punctual customers. Wang [37] considers a problem similar to ours, except that customers are

always punctual and always show up. He considers the problem of selecting appointment times

to minimize total cost (measured as the sum of delay cost and completion cost). He develops a

recursive procedure for computing expected waiting times. This procedure is integrated into a
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non-linear optimization algorithm for computing appointment times. This work is extended in [38]

for the case of exponentially-distributed service times with heterogeneous rates and to a setting

where there is flexibility in how patients are sequenced. The joint sequencing and appointment

scheduling is also studied in [25] and in [14] by allowing for no-shows.

Hassin and Mendel [11] consider the problem where customers may not always show up and

study the impact for no-shows. They do so for the case where the no-show probability is the same for

all customers and service times are independent and have identical exponential distributions. They

develop a procedure for determining optimal appointment times for the case where the objective

is to minimize the cost of customer waiting time and completion cost. In doing so, they rely on

the fact that the objective function is convex. Other related literature include [22, 24, 19] and the

references therein. Our paper complements this literature by considering a more general setting

by allowing for no-show probabilities to be heterogeneous, service time distributions to be Cox-

distributed and by considering non-punctuality. Moreover, we consider an alternative approach to

generating appointment times (minimizing completion time subject to a constraint on customer

waiting time).

Millhiser and Valenti [28] develop a numerical approach for computing the probability of cus-

tomer waiting time and completion (among other performance measures) in a setting similar to

ours and by considering heterogeneous service times and no-show probabilities. Using this ap-

proach, Millhiser et al. [30] propose a framework for optimizing appointment times so as to satisfy

a constraint on the waiting time that each customer experiences. This approach for appointment

scheduling is similar to the online optimization approach we discuss in Section 5. Chen et al. [6]

use the theory of majorization to study properties of the optimal schedule for a similar problem

with punctual customers.

The literature we have discussed so far considers, as we do in this paper, a continuous time

setting. There is also literature that treats time as being discrete and where appointments may

only be scheduled at discrete points in time. The resulting appointment scheduling problem is

typically formulated as a non-linear discrete optimization problem. Depending on its features, the

problem is solved either exactly or using an approximation. Examples include [16, 45, 34, 21, 43]

and the references therein.
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Non-punctual customers. Although non-punctuality is quite prevalent in practice [17] aca-

demic literature that accounts for it is relatively limited. Deceuninck et al. [7] provide an excellent

review of this literature. Among the papers that consider non-punctuality, some rely on simulation;

see for example [4, 18, 41, 46]. Papers that provide analytical results include [7, 13, 44]. Jiang et al.

[13] use a scenario-based stochastic programming approach to formulate an appointment scheduling

problem with non-punctuality and no-shows. They generate scenarios for possible realizations of

the various random variables involved. Each set of realizations leads to a deterministic problem.

Combining these problems leads to an approximation of the original stochastic problem. Deceun-

inck et al. [7] consider a discrete time system and develop an approach for sequencing customers and

assigning appointment times while accounting for non-punctuality and no-shows. Their approach

for evaluating performance relies on a modified Lindley recursion. The appointment schedule opti-

mization relies on a local search algorithm. Zacharias and Yunes [44] also consider a discrete time

setting with non-punctuality, no-shows, and walk-in customers. They formulate the problem as

a non-linear integer program. They show that the objective function, the sum of customer delay

cost and overtime cost, for the case they consider is super-modular and component-wise convex,

which they leverage to construct an efficient solution algorithm. Mercer [27] considers a system

with equally spaced appointment times, identical show up probabilities, and identical distributions

for service times and lateness. Under the assumption of an infinite number of arrivals, he derives

the equilibrium distribution of the queue length.

Our paper is also related to literature that considers queueing systems with a finite number of

arrivals, though not driven by appointments. Examples include [33] and [39]. Parlar and Sharafali

[33] consider a model with a finite number of arrivals motivated by the arrival process of customers

at airport check-in counters. Customers arrive independently of each other, with arrivals modeled

as a “death process” from a finite population of travelers. Wang et al. [39] study a queueing model

with a finite number of arrivals where inter-arrival times and service times are independent and

heterogeneous. Both single and multi-server settings are considered. They examine the effect of

heterogeneity in inter-arrival and service times on waiting times. In this paper, we build on the

approach in Wang et al. [39] to study a system with a finite number of arrivals that are driven by

appointments and incorporate both non-punctuality and no-shows.

In summary, our paper complements the existing literature by considering a system in con-
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tinuous time where the arrival of customers is driven by appointments and where customers are

non-punctual and may not always show up. Our treatment is general in the sense that we allow for

no-show probabilities and non-punctuality to be heterogeneous across customers. We also consider

a fairly general class of service times. We provide methodologies for both exact and approximate

analysis. In the spirit of Millhiser et al. [29, 30], we illustrate the usefulness of our approach to

online scheduling where the objective is to minimize completion time subject to a constraint on the

waiting time for each customer. We enrich the study of non-punctuality by providing additional

insights into its impact on schedules and performance. A preliminary conference version of this

paper is Jouini and Benjaafar [15]. To our knowledge, that paper is among the first in the literature

to study an analytical model that incorporates customer non-punctuality.

3 Problem description and analysis

3.1 Problem description

We consider a queueing system with a single server and a finite number of customers who arrive

over time. There are M customers who are scheduled to arrive. We denote by dn, for n = 1, · · · ,M ,

the appointment time of the n-th customer. We index customers by their appointment times and

we assume that dn ≤ dm if n < m. Customer n has a probability αn of showing up, independently

of all other events. If a customer shows up, she may do so earlier or later than her appointment

time. More specifically, the customer may show up at a random time between dn− τ ln and dn + τun .

In other words, the arrival time of customer n can be described by a random variable with finite

support dn − τ ln and dn + τun . We refer to this random variable as Dn and allow it to have a

general distribution with probability distribution function (pdf) denoted by fn and cumulative

distribution function (cdf) denoted by Fn. We use interchangeably the terms arrival distribution

and non-punctuality distribution. Note that we allow for this distribution function to be customer

specific4. We further assume that customers arrive in the order of their appointment times, so that

Dn−1 < Dn or equivalently dn − dn−1 ≥ τun−1 + τ ln. Therefore, customer arrival times are non-

overlapping. This assumption is made for tractability and also to avoid the thorny issue around

whether or not to proceed with the service of a customer who shows up earlier than the customer

4This is an important feature in applications, such as healthcare, where data may be available, or can be collected,
on the punctuality of different customers and where punctuality of different customers can vary significantly.
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scheduled before her and whether or not to preempt her service once that the customer with the

earlier appointment shows up. This assumption is reasonable in settings where the times between

appointments are large relative to customer lateness (for example, two successive appointment

times are 50 minutes apart but customers are at most 25 minutes early or late) or when the service

provider does not allow lateness to exceed a specified threshold. We place no other assumptions on

the distribution of customer arrival times.

Upon arrival, a customer goes immediately into service if the server is available. If not, the cus-

tomer joins the queue where she waits for service. Service times are independent and exponentially-

distributed with mean service rate µ (in Section 3.4, we extend the analysis to the case where service

times follow a homogeneous Cox-distributed). We assume that the server is available to start work

exactly at d1 (the scheduled time of the first customer). The server remains available until the last

customer has completed service. The server has no prior knowledge of whether or not a particu-

lar customer will show up. Therefore if customer M shows up, the server shuts down as soon as

customer M completes service. If not, the server shuts down after the latest possible arrival time

of customer dM + τuM and as soon as the last customer present in system completes service. We

assume that customers are processed in the order of their appointment times. We also assume that

the system is work-conserving with the server never idling when there are customers in the queue.

3.2 Analysis

Our approach consists of first deriving the stationary probability of the system state seen by a new

arrival, conditioned on system states seen by the previous arrival. Then, from the schedule, we

compute the distribution of inter-arrival time between customer n and n − 1, conditioned on the

system state when the customer n − 1 arrives. Finally, we compute the conditional waiting time

by combining results from the first two steps and characterize the unconditional waiting time by

averaging over all possibilities.

3.2.1 Distribution of the number of customers at arrival instants

A full schedule is defined by the vector δ = (d1, ..., dM ). Without loss of generality, we choose

d1 = τ l1 such that the origin of time is at d1 − τ l1 = 0. We denote by Rn the random variable that

describes the number of customers found (would have been found) in the system by customer n if
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she shows up (does not show up). This means that the total number of customers in the system at

time Dn is Rn + 1 (Rn) if customer n shows up (does not show up). We let pn,i = Pr{Rn = i} refer

to the probability that the n-th customer finds (would have found), upon arrival if she shows up

(she does not), i customers already in the system (i.e., in the queue or in service), for 0 ≤ i ≤ n− 1

and 1 ≤ n ≤M .

Let Xn be the random variable describing the inter-arrival time between customers n and

n + 1 (note that we associate an arrival time with a customer regardless of whether or not she

actually shows up; if the customer does not show up, we refer to this as a virtual arrival), where

Xn = Dn+1 −Dn for 1 ≤ n ≤M − 1. We denote by hn(.) the pdf of the random variable Xn. We

have dn+1− dn− τ ln+1− τun ≤ Xn ≤ dn+1− dn + τun+1 + τ ln. Note that the random variables Dn and

Dn+1 do not overlap; thus, Xn ≥ 0. Figure 1 graphically illustrates the customer arrival dynamics.

 

t = 0 dn dn + τu
ndn − τl

n

Dn Dn+1

dn+1 dn+1 + τu
n+1dn+1 − τl

n+1

Xn

Figure 1: The appointment-driven arrival process

Initialization: the case of n = 1 and n = 2. For n = 1, p1,0 = 1 and p1,i = 0 for i 6= 0 since

the first customer always finds the system empty if she shows up. However she may have to wait

to start service because the server starts work exactly at d1. We shall discuss this matter later in

this section.

For n = 2, we have p2,0 = 1 − p2,1. In what follows, we compute p2,1. To do so, we separate

the cases of whether customer 1 arrives early (D1 < d1), or she arrives late (D1 ≥ d1). Recall that

d1 = τ l1. Then the probability p2,1 may be written as

p2,1 = α1Pr{D1 < d1}p2,1|D1<d1 + α1Pr{D1 ≥ d1}p2,1|D1≥d1 (1)

= α1

(∫ d1

0
f1(x) dx

)
p2,1|D1<d1 + α1

(∫ d1+τu1

d1

f1(x) dx

)
p2,1|D1≥d1 ,

where p2,1|D1<d1 (p2,1|D1≥d1) is the conditional probability that customer 2 sees customer 1 in the

system upon arrival, given that customer 1 arrives early (late).
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Customer 1 arrives early. Given that customer 1 arrives early, we have

p2,1|D1<d1 = Pr{D2 − d1 < εµ}, (2)

where εµ is an exponential random variable with rate µ. Then

p2,1|D1<d1 =

∫ d2−d1+τu2

d2−d1−τ l2
Pr{x < εµ}f2(x+ d1) dx =

∫ d2−d1+τu2

d2−d1−τ l2
e−µxf2(x+ d1) dx. (3)

Customer 1 arrives late. Given that customer 1 arrives late, we have

p2,1|D1≥d1 = Pr{D2 −D1 < εµ |D1 ≥ d1} =

∫ d2−d1+τu2

d2−d1−τ l2−τu1
e−µxh1|D1≥d1(x) dx, (4)

where h1|D1≥d1(x) defined on d2−d1− τ l2− τu1 ≤ x ≤ d2−d1 + τu2 is the pdf of the random variable

(D2 −D1)|D1 ≥ d1; the conditional inter-arrival time given that customer 1 arrives late. This pdf

can be obtained as follows:

h1|D1≥d1(x) =

∫ ∞
−∞

f2(u)f1|D1≥d1(u− x) du, (5)

where

f1|D1≥d1(x) =


f1(x)

1−F1(d1) if d1 ≤ x ≤ d1 + τu1 and

0 otherwise.

(6)

In the convolution in (5), the intersection of the supports of the two functions is

Ω2,x = [max(d2 − τ l2, d1 + x),min(d2 + τu2 , d1 + τu1 + x)].

Note that min(d2 + τu2 , d1 + τu1 + x) ≥ max(d2 − τ l2, d1 + x) always holds for d2 − d1 − τ l2 − τu1 ≤

x ≤ d2 − d1 + τu2 . Thus, (5) can be rewritten as

h1|D1≥d1(x) =

∫
Ω2,x

f2(u)
f1(u− x)

1− F1(d1)
du. (7)

Substituting (3) and (4) into (1) leads to p2,1 and p2,0 = 1− p2,1.
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Iteration: the case of n ≥ 3. For 3 ≤ n ≤M , we separate the cases i = 0 and 1 ≤ i ≤ n− 1 to

compute pn,i. Consider first pn,i for 3 ≤ n ≤M and 1 ≤ i ≤ n− 1. Conditioning on the number of

customers found upon arrival by customer n− 1, we have

pn,i =

n−2∑
j=i−1

pn−1,jPr{Rn = i | Rn−1 = j}. (8)

We distinguish the cases of whether customer n − 1 shows up or not. For customer n to find i

customers upon arrival given that customer n−1 found (would have found) j customers, there must

be j − i + 1 service completions (j − i service completions) between the arrival times of customer

n−1 and customer n. This also means that, once customer n−1 arrives but before customer n does

(the duration is Xn−1), exactly j− i+1 service completions (j− i service completions) occur. Since

the server has an exponential service time, the number of customers served during Xn−1 follows

a Poisson process with rate µ. Denoting by hn−1,j(.) the pdf of the conditional inter-arrival time

between customers n− 1 and n, given that the former finds (would have found) j customers in the

system if she shows up (she does not), for 0 ≤ j ≤ n− 2, we have

pn,i = αn−1

n−2∑
j=i−1

pn−1,j

∫ dn−dn−1+τun+τ ln−1

dn−dn−1−τ ln−τun−1

(µx)j+1−i

(j + 1− i)!
e−µxhn−1,j(x) dx (9)

+ (1− αn−1)

n−2∑
j=i

pn−1,j

∫ dn−dn−1+τun+τ ln−1

dn−dn−1−τ ln−τun−1

(µx)j−i

(j − i)!
e−µxhn−1,j(x) dx,

for 3 ≤ n ≤M and 1 ≤ i ≤ n− 1, with the convention that an empty sum is equal to 0.

A difficulty in the recursive approach is the characterization of the function hn−1,j(.). By

definition, hn−1,j(.) is the pdf of the random variable Xn−1,j = Dn − Dn−1,j , where Dn is the

unconditional arrival time of customer n and Dn−1,j is the conditional arrival time of customer

n− 1, given that she finds (would have found) j customers in the system if she shows up (she does

not show up). Then, hn−1,j(x) =

∫ ∞
−∞

fn(u)fn−1,j(u− x) du. The support of Dn is [dn−τ ln, dn+τun ]

and the support of Dn−1,j is the same as the support of Dn−1, i.e., [dn−1 − τ ln−1, dn−1 + τun−1].

Therefore, the intersection between the two supports is

Ωn,x = [max (dn − τ ln, dn−1 − τ ln−1 + x),min (dn + τun , dn−1 + τun−1 + x)],
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for dn − dn−1 − τ ln − τun−1 ≤ x ≤ dn − dn−1 + τun . So,

hn−1,j(x) =

∫
Ωn,x

fn(u)fn−1,j(u− x) du. (10)

Applying Bayes’ theorem, we may write

fn−1,j(t) =
pn−1,j|Dn−1=t × fn−1(t)

pn−1,j
, (11)

where pn−1,j|Dn−1=t is the probability that customer n − 1 finds j customers in the system given

that she shows up at time t. It is a function of time t that can be calculated using pn−2,k and

fn−2,k(t
′). In particular,

pn−1,j|Dn−1=t = αn−2

n−3∑
k=j−1

pn−2,k

∫ dn−2+τun−2

dn−2−τ ln−2

(µ(t− t′))k+1−j

(k + 1− j)!
e−µ(t−t′)fn−2,k(t

′) dt′+

(1− αn−2)
n−3∑
k=j

pn−2,k

∫ dn−2+τun−2

dn−2−τ ln−2

(µ(t− t′))k−j

(k − j)!
e−µ(t−t′)fn−2,k(t

′) dt′,

(12)

for 1 ≤ j ≤ n − 2 and n > 3. The case n = 3 needs to be treated separately due to the fact that

the first service starts exactly at d1. In this case, we have

p2,1|D2=t = α1

(∫ d1+τu1

d1

e−µ(t−t′)f1,0(t′) dt′ +

∫ d1

d1−τ l1
e−µ(t−d1)f1,0(t′) dt′

)
. (13)

Finally, the probabilities pn,0 can be obtained using

pn,0 = 1−
n−1∑
i=1

pn,i, (14)

for 3 ≤ n ≤M .

Using the above expressions, the probabilities pn,i for 1 ≤ n ≤ M and 0 ≤ i ≤ n − 1 can

now be computed recursively starting with n = 1. The overall approach for computing the pn,is is

summarized in Figure 2.
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pn−1,j , fn−2,k(t)

Init: p2,1, p2,0, f1,0(t) = f1(t)

pn−1,j|Dn−1=t fn−1,j(t) hn−1,j(x) pn,i, fn−1,j(t)
(12) (11) (10) (9)

Figure 2: Steps for computing the probabilities pn,i

3.2.2 Waiting time distributions

Having obtained the probability distribution of the number of customers in the system observed by

an arriving customer, we can characterize the distribution of waiting time of each customer. Let

Wn, a random variable, denote the waiting time in the queue of customer n, if she shows up, and

let E[W k
n ] be the corresponding k-th moment for k ≥ 1. (For the rest of the paper, E[Z] denotes

the expected value of a given random variable Z and E[Zk] the k-th moment). Then

E[W k
n ] =

n−1∑
i=1

pn,iE[W k
n,i], (15)

for 2 ≤ n ≤M , where Wn,i is the random variable denoting the waiting time in queue of customer

n, given that customer n shows up and finds i customers upon arrival. Since service times are

independent and exponentially-distributed with parameter µ, Wn,i has an i-Erlang distribution

with i phases and rate µ per phase. Using Equation (15) and knowing that E[Wn,i] =
i

µ
and

E[W 2
n,i] =

i(i+ 1)

µ2
, we obtain

E[Wn] =
n−1∑
i=1

pn,i
i

µ
and E[W 2

n ] =
n−1∑
i=1

pn,i
i(i+ 1)

µ2
, (16)

for 2 ≤ n ≤M .

Moreover, we have

Pr{Wn,i < t} = 1−
i−1∑
j=0

(µt)j

j!
e−µt, (17)
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for t ≥ 0. Consequently,

Pr{Wn < t} = pn,0 +
n−1∑
i=1

pn,iPr{Wn,i < t} (18)

= 1−
n−1∑
i=1

i−1∑
j=0

pn,i
(µt)j

j!
e−µt.

The case n = 1 is treated separately. Assume customer 1 shows up. If she arrives before d1,

then she has to wait for the server’s work starting time at d1. If not, she immediately enters service

with no waiting (recall that d1 − τ l1 = 0). Then

E[W k
1 ] =

∫ d1

0
(d1 − x)kf1(x) dx. (19)

Also,

Pr{W1 < t} = Pr{d1 −D1 < t |D1 < d1}Pr{D1 < d1}+ Pr{D1 ≥ d1} (20)

= (1− Pr{D1 ≤ d1 − t |D1 < d1}) Pr{D1 < d1}+ Pr{D1 ≥ d1}.

The pdf of the random variable D1|D1 < d1 is defined on [0, d1] and is given by
f1(x)

Pr(D1 < d1)
. After

some algebra, Equation (20) leads to

Pr{W1 < t} = 1−
∫ max(d1−t,0)

0
f1(x) dx. (21)

3.3 An example: A symmetric system with uniformly-distributed non-punctuality

In this section, we illustrate the steps in characterizing the probability distributions for the special

case of a symmetric system where customer non-punctuality is homogeneous and has the uniform

distribution. In Appendix A, we also provide discussion for the case where customer non-punctuality

has a symmetric triangular distribution. For brevity, we limit our discussion to the initialization

steps (the iterative steps follow in a straightforward way as the general approach).

When the non-punctuality is symmetric and uniformly-distributed, we have, for 1 ≤ n ≤ M ,

τun = τ ln = τ , which leads to fn(t) =
1

2τ
on [dn − τ, dn + τ ] and 0 otherwise. For n = 2, we have

13



p2,0 = 1− p2,1, so we complete the initialization step by computing p2,1 as follows:

p2,1 = α1Pr{D1 < d1}p2,1|D1<d1 + α1Pr{D1 ≥ d1}p2,1|D1≥d1

= α1
1

2

∫ d2−d1+τ

d2−d1−τ
e−µxf2(x+ d1) dx+ α1

1

2

∫ d2−d1+τ

d2−d1−τ l2−τ
e−µxh1|D1≥d1(x) dx

=
α1

2

(
eµτ − e−µτ

2µτ
+

∫ d2−d1+τ

d2−d1−2τ
e−µxh1|D1≥d1(x) dx

)
. (22)

Using (7), we can compute h1|D1≥d1(x) on [d2 − d1 − τ l2 − τu1 , d2 − d1 + τu2 ] as

h1|D1≥d1(x) =

∫ d2+τ

d2−τ
f2(u)

f1(u− x)

1− F (d1)
1{d1≤u−x≤d1+τ} du

=

∫ d2+τ

d2−τ

1

2τ

1

τ
1{d1+x≤u≤d1+τ+x} du

=
1

2τ2

(
min(d2 + τ, d1 + τ + x)−max (d2 − τ, d1 + x)

)

=



x+d1−d2+2τ
2τ2

, for d2 − d1 − 2τ ≤ x < d2 − d1 − τ

1
2τ , for d2 − d1 − τ ≤ x ≤ d2 − d1

d2−d1+τ−x
2τ2

, for d2 − d1 < x ≤ d2 − d1 + τ.

(23)

Combining (22) and (23), we obtain

p2,1 = α1
e−µ(d2−d1)

4µ2τ2
(eµτ − e−µτ )(eµτ + τµ− 1).

3.4 Systems with γ−Cox-distributed service times

In this section, we extend the analysis to the case where service times follow a homogeneous γ−Cox

distribution (or simply γ−Cox distribution). This family of distributions is dense in the field of

positive distributions as shown in [23] and has the advantage of being easier to manipulate than

a general phase-type distribution. The γ−Cox distribution is a special case of a Cox distribution.

Under the γ−Cox distribution, service time for each customer consists of a succession of independent

and homogeneous exponential phases, each with rate γ. The maximal number of phases is m. This

distribution is defined by the probabilities q0, q1, · · · , qm−1, with 0 ≤ qi ≤ 1, where qi is the

probability to continue service after having reached phase i. With probability 1 − qi, a service in

phase i ends at the end of phase i. Instantaneous service is possible, with probability 1−q0. At the
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end of phase m, the service always ends, i.e., qm = 0. The cdf of the γ−Cox distribution, Gγ(t),

and the pdf, gγ(t), are given respectively by

Gγ(t) = 1− e−γt
m−1∑
k=0

(γt)k

k!

k∏
i=0

qi and (24)

gγ(t) = γe−γt
m−1∑
k=0

(γt)k

k!
(1− qk+1)

k∏
i=0

qi, (25)

for t ≥ 0.

To characterize the waiting time distribution, we apply a similar recursive method to the one

used for the case of exponentially-distributed service times. In that case, the system state (number

of customers ahead in the system) seen by a new arrival leads to a deterministic number of expo-

nential phases that represent the waiting time of this new arrival. Under the γ−Cox distribution,

knowing just the system status at arrival instances (number of customers ahead in the system and

the current phase of the customer in service) is not sufficient as we need to account for the random

number of exponential phases for each customer ahead.

A direct method, considering all possible paths for the total number of service phases ahead,

would have a high computational cost because of the large number of convolutions involved. To

avoid this complication, we study an equivalent version of the system by allowing the number of

phases associated with the service of a customer to be realized at the time of arrival instead of

during service, and by defining the system state to be the actual number of phases of all customers

ahead in the system who remain to be served. This version is equivalent to the original one because

the service times of customers are independent. Let Rn denote the random variable that describes

the system state found (would have been found) by customer n if she shows up (does not show

up), and let pn,r = Pr{Rn = r}, for 0 ≤ r ≤ (n− 1)m and 1 ≤ n ≤M . Let Θn denote the random

variable that describes the number of exponential phases of which the service of customer n consists,

and θn,i denote the probability that Θn = i, for 0 ≤ i ≤ m and 1 ≤ n ≤M . Because service times

are homogeneous across customers, we have θn,0 = θ0 = 1 − q0 and θn,i = θi = (1 − qi)
i−1∏
k=0

qi, for

1 ≤ i ≤ m.

We first characterize the probability pn,r, i.e., the probability that customer n finds upon her

arrival that the remaining service of customers in the system consists of r exponential phases, for

1 ≤ n ≤M and 0 ≤ r ≤ (n− 1)m.
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Initialization: the case of n = 1 and n = 2. For n = 1, p1,0 = 1 and p1,r = 0 for r 6= 0, since

the first customer always finds the system empty if she shows up. However she may have to wait

to start service because the server starts work exactly at d1. For n = 2, we have p2,0 = 1−
m∑
r=1

p2,r.

Next, we compute p2,r, for 1 ≤ r ≤ m. Similar to the analysis in the exponential case, we separate

the cases of whether customer 1 arrives early (D1 < d1) or late (D1 ≥ d1). Recall that d1 = τ l1;

then the probability p2,r can be written as

p2,r = α1Pr{D1 < d1}p2,r|D1<d1 + α1Pr{D1 ≥ d1}p2,r|D1≥d1 (26)

= α1

(∫ d1

0
f1(x) dx

)
p2,r|D1<d1 + α1

(∫ d1+τu1

d1

f1(x) dx

)
p2,r|D1≥d1 ,

for 1 ≤ r ≤ m, where p2,r|D1<d1 (p2,r|D1≥d1) is the conditional probability that customer 2 sees

r remaining phases of customer 1 in the system upon arrival, given that customer 1 arrives early

(late). In order for customer 2 to see r phases, customer 1 must have at least r phases and Θ1 − r

phases have been completed between the beginning of the service of customer 1 (who shows up)

and the arrival of customer 2. To know the exact number of phases completed, we further condition

on the number of phases of customer 1. Therefore, if customer 1 arrives early (work starts at d1),

we have

p2,r|D1<d1 =

m∑
i=r

θi

∫ d2−d1+τu2

d2−d1−τ l2

(γx)i−r

(i− r)!
e−γxf2(x+ d1) dx, (27)

for 1 ≤ r ≤ m. If customer 1 arrives late (work starts at D1 ≥ d1), we have

p2,r|D1≥d1 =

m∑
i=r

θi

∫ d2−d1+τu2

d2−d1−τ l2−τu1

(γx)i−r

(i− r)!
e−γxh1|D1≥d1(x) dx, (28)

for 1 ≤ r ≤ m, where h1|D1≥d1(x) is defined similarly to the case with exponential service time,

and can be obtained from (1). Using (27) and (28) and substituting in (26), we obtain p2,r for

1 ≤ r ≤ m and then p2,0.

Iteration: the case of n ≥ 3. For 3 ≤ n ≤M , we separate the cases r = 0 and 1 ≤ r ≤ (n−1)m.

Consider first pn,r for 3 ≤ n ≤ M and 1 ≤ r ≤ (n − 1)m. Our approach is based on conditioning

on the number of service phases of customer n− 1, the number of phases found ahead (would have

been found) upon arrival by customer n− 1, and whether customer n− 1 shows up or not. Notice

that these conditions are independent. Denoting by hn−1,j(.) the pdf of the conditional inter-arrival
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time between customers n − 1 and n, given that the former finds (would have found) j phases in

the system if she shows up (she does not), we have

pn,r = αn−1

m∑
i=0

θi

(n−2)m∑
j=max(r−i,0)

pn−1,jPr{Rn = r | Rn−1 = j,Θn−1 = i, customer n− 1 shows up}

+ (1− αn−1)

(n−2)m∑
j=r

pn−1,jPr{Rn = r | Rn−1 = j, customer n− 1 does not show up}

= αn−1

m∑
i=0

θi

(n−2)m∑
j=max(r−i,0)

pn−1,j

∫ dn−dn−1+τun+τ ln−1

dn−dn−1−τ ln−τun−1

(γx)j+i−r

(j + i− r)!
e−γxhn−1,j(x) dx

+ (1− αn−1)

(n−2)m∑
j=r

pn−1,j

∫ dn−dn−1+τun+τ ln−1

dn−dn−1−τ ln−τun−1

(γx)j−r

(j − r)!
e−γxhn−1,j(x) dx, (29)

for 3 ≤ n ≤ M and 1 ≤ r ≤ (n − 1)m, with the convention that an empty sum is equal to 0. By

redefining fn−1,j(.) and pn−1,j|Dn=t based on the number of phases ahead (instead of the number of

customers ahead as in the case with exponential service time) observed by customer n− 1, we can

obtain hn−1,j(x) and fn−1,j(t) using (10) and (11). The only missing term in (11) is pn−1,j|Dn=t,

which can be obtained as

pn−1,j|Dn−1=t = αn−2

m∑
i=0

θi

(n−3)m∑
k=max(j−i,0)

pn−2,k

∫ dn−2+τun−2

dn−2−τ ln−2

(γ(t− t′))k+i−j

(k + i− j)!
e−µ(t−t′)fn−2,k(t

′) dt′

+(1− αn−2)

(n−3)m∑
k=j

pn−2,k

∫ dn−2+τun−2

dn−2−τ ln−2

(γ(t− t′))k−j

(k − j)!
e−µ(t−t′)fn−2,k(t

′) dt′,

(30)

for 1 ≤ j ≤ (n− 2)m and n > 3, and

p2,j|D2=t = α1

m∑
i=j

θi

(∫ d1+τu1

d1

(γx)i−r

(i− r)!
e−γ(t−t′)f1,0(t′) dt′ +

∫ d1

d1−τ l1

(γx)i−r

(i− r)!
e−γ(t−d1)f1,0(t′) dt′

)
,

(31)

for 1 ≤ j ≤ m. Using (10), (11), (30) and (31), we can obtain pn,r for 1 ≤ r ≤ (n− 1)m using (29).

Finally, the probabilities pn,0 can be computed as pn,0 = 1−
∑(n−1)m

i=1 pn,r for 3 ≤ n ≤M . With the

same procedure as shown in Figure 2, the probabilities pn,r for 1 ≤ n ≤ M and 0 ≤ r ≤ (n− 1)m

can now be computed recursively starting with n = 1.

The above procedure allows us to determine the distribution of Wn,r, P (Wn,r < t), for n > 1

and the moments of the waiting time by applying the same computation as in Section 3.2.2. The
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details are provided in Appendix B.

Special cases. As mentioned at the beginning of this section, γ−Cox distributions are dense in

the field of positive distributions. Below, we specify the parameters of the γ-Cox distribution for

several common distributions. We refer the reader to Section 3 in [23] for additional details.

• Exponential with rate µ: Set m = 1, q0 = 1, and γ = µ.

• Erlang with m phases and rate mµ per phase: Set q0 = q1 = · · · = qm−1 = 1, and γ = mµ.

• Deterministic with duration τ : Set m
µ = τ in the Erlang case and let m and µ go to infinity.

• Hyperexponential with parameters (µn, pn) with µn > 0 and pn ∈ [0, 1] for n = 1, 2, · · · , N

(i.e., with probability pn the service time follows an exponential distribution with rate µn, for

n = 1, 2, · · · , N): Set q0 = 1, qi =

N∑
n=1

pn
(

γ
γ+µi

)i
N∑
n=1

pn
(

γ
γ+µi

)i−1
, for 0 < i ≤ m− 1 and let first m and then

γ go to infinity.

• Hypoexponential with rates µn, with µn > 0, µn 6= µm, for 1 ≤ n,m ≤ N (i.e., the service is

a succession of N exponential phases with rate µn, for n = 1, 2, · · · , N , where the rates may

be different): Set q0 = 1 and qi =

N∑
n=1

pn
(

γ
γ+µi

)i ∏
n 6=m

µm
µm−µn

N∑
n=1

pn
(

γ
γ+µi

)i−1 ∏
n 6=m

µm
µm−µn

, for 0 < i ≤ m− 1 and let first m

and then γ go to infinity.

4 Numerical results: the impact of non-punctuality

In this section, we present numerical results to assess the impact of customer non-punctuality on

expected waiting time, which also allows us to assess the error in evaluating waiting times that would

be introduced if customers were assumed to be always punctual. To measure the impact of non-

punctuality, we evaluate the percentage difference in expected waiting time between a system where

customers are non-punctual, E[Wnon−punctual] and one where customers are always punctual (that

is, customers show up on exactly their appointment times), E[Wpunctual], where the percentage is

computed as
E[Wnon−punctual]−E[Wpunctual]

E[Wpunctual]
× 100%. In both the punctual and non-punctual systems,

we allow for no-shows, where the probability of no-shows is the same in both systems (in the

punctual system, the customers that do show up, they do it on time). Appointment times are
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constructed as follows. Appointment time for customer n is dn = dn−1 +
1

µn−1
, for 2 ≤ n ≤M . For

customer 1, appointment time is d1 = τ1. This appointment scheme is perhaps consistent with some

that are observed in practice that seek to limit the idleness of the servers (introducing additional

slack time between appointments would reduce customer waiting time but increase server idleness).

In Section 5, we discuss additional numerical results where appointment times are optimized and

may not be equally spaced as chosen here.

The results, representative of a much larger set, are shown in Figures 3 and 4. The results shown

in Figure 3 are for systems where service times are exponentially-distributed. To examine the impact

of service time variability, we choose to generate results for non-exponential distribution. The

results in Figure 4 are for systems where the service times are m-Erlang-distributed (m exponential

phases with rate mµ per phase) with the same mean but different coefficients of variation (CV ).

Moreover, for the sake of brevity, the results presented are only for systems where non-punctuality

has the uniform distribution. Results obtained (but not shown here) for other distributions of

punctuality yield similar insights. The following observations can be made.

• As shown in Figure 3, non-punctuality can significantly increase customers’ waiting time (or,

equivalently, ignoring non-punctuality can lead to significant errors in waiting time estima-

tion).

• The effect of non-punctuality is more significant when the number of customers is small. It is

also more significant when the show up probability is low. This is perhaps surprising, as one

might expect the impact of non-punctuality to be greater when there are more customers in

the system (either because of a larger M or a higher α). The effect appears to be due to the

fact that, when either M or α are large, expected waiting time is relatively large even when

the customers are punctual. Introducing non-punctuality does increase waiting time, but the

effect is relatively small.

• As shown in Figure 4, the impact of non-punctuality is more significant for systems with low

service time variability (the results in Figure 4) are for a system where service times are m-

Erlang-distributed. Coefficient of variation (CV ) is varied by varying the number of phases

m for fixed µ. Again, this is perhaps surprising and appears due to the fact that when service

time variability is high, so is congestion. Therefore, the introduction of non-punctuality,
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which introduces variability in the arrival process, has a relatively smaller effect.

(a) α = 1 (b) M = 10

Figure 3: The impact of non-punctuality (τ ln = τun = τ , αn = α, µ = 0.2)

(a) Impact of the service time variability (τ = 0) (b) Impact of non-punctuality (α = 1)

Figure 4: The impact of non-punctuality with m-Erlang service times (M = 10, µ = 0.1, τ ln = τun =
τ , αn = α)

We also observe that in all cases, the expected waiting time when customers are punctual

is lower than the expected waiting time in the case when customers are non-punctual (i.e., the

punctual case produces a lower bound on the expected waiting time for the non-punctual case). In

what follows, we provide analytical support for this observation and show that it is true regardless

of the distribution of punctuality.

Proposition 1. Consider two systems denoted by System 1 and System 2. They are identical

except for the arrival pattern of customer n. In System 1 customer n is punctual (arrives at exactly

dn). In System 2 she is not punctual (arrives at a random moment Dn). If E[Dn] = dn, then the

expected waiting time of customer m (m ≥ n) is higher under System 2 than that under System 1

(i.e., E(Wn|System 1) ≤ E(Wn|System 2)).
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The proof of Proposition 1 can be found in Appendix C. It is based on a sample path argument

showing that the completion time of customer m is convex with respect to the arrival time of

customer n.

5 Application: Appointment scheduling subject to a service level

constraint

In this section, we illustrate how our approach can be used as a basis for generating optimal

appointment times. We consider a setting where appointments are generated online, with requests

for appointments arriving over time and appointments provided at the time of arrival of such

requests. Appointments are generated taking into account the characteristics of the customer

requesting the appointment (punctuality, likelihood of show up and distribution of service time),

the set of previously scheduled appointments and the characteristics of the corresponding customers.

Similar to Millhiser et al. [29, 30], we consider a problem formulation that guarantees a minimum

service level for each individual customer. Specifically, we consider a setting where the objective is to

minimize the expected service completion time for each customer n assuming she shows up, denoted

by E[Cn], while meeting a service level requirement on the waiting time of this customer n. Service

levels could be specified in a variety of ways, including a requirement that expected waiting time for

each customer does not exceed a certain threshold or that the probability of waiting time exceeding

a certain threshold is less than a specified level. Note that such an approach obviates the need,

observed in typical appointment scheduling formulations, for determining parameter values for the

cost of waiting for customers and the cost of overtime for servers (an overtime cost is incurred when

the service completion time of the last customer exceeds a specified threshold5). This approach

is also more equitable, in the sense that it treats all customers equally and avoids that certain

customers experience excessive waiting times. More importantly, this approach is more practical

since it allows us to provide a customer with an appointment time when that request is made.

That is, we do not need to wait for all the requests to become known before we assign appointment

times. This perhaps corresponds to the practical case where customers call an appointment line and

are provided with an appointment on the spot (i.e., without knowledge about future appointment

5Typical formulations from the appointment scheduling literature adopt the objective of minimizing the sum of
the cost of expected waiting time for customers and the cost of expected overtime for the server.
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requests).

The optimal appointment for the n-th customer, for n = 2, ...,M can be obtained by solving

the following optimization problem (without loss of generality, we let d∗1 = τ1):

min
dn

E[Cn] (32)

subject to E[Wn|d1 = d∗1, · · · , dn−1 = d∗n−1] ≤ SL, and (33)

E[Cn] = E[Dn] + E[Wn] +
1

µ
, (34)

where the decision variable is the appointment time dn such that dn ≥ d∗n−1 (with d∗j denoting the

optimal solution to the above problem at n = j). The online problem is solved for each customer

n (for n = 2, ...,M), so M − 1 times. The obtained schedule guarantees the earliest expected time

for individual customers to exit the system while maintaining reasonable waiting time. Note that

the optimal appointment time of a customer, say customer j, is generated based on the optimal

appointment times of all the customers that preceded her. These are known upon the arrival of

customer j. In other words, d∗1, ..., d
∗
j−1 are inputs for the problem at rank j.

In Proposition 2, we describe a stochastic ordering result for Wn that allows us to characterize

the optimal appointment times. We first define the concept of stochastic ordering we use.

Definition 1.

1. A real random variable Z1 is stochastically larger than a real random variable Z2 if

Pr{Z1 > t} ≥ Pr{Z2 > t}, for all t ∈ R.

It is equivalent to say that Z1 first-order stochastically (FOS) dominates Z2.

2. Let Zβ be a real random variable with parameter β ∈ R. We say that Zβ stochastically

decreases in β if Zβ FOS dominates Zβ̂ whenever β ≤ β̂, for β, β̂ ∈ R.

Proposition 2. For 2 ≤ n ≤M , the random variable Wn stochastically decreases in dn.

The proof of Proposition 2 is given in Appendix C.2. The results below immediately follow.

Corollary 1. The following holds for 2 ≤ n ≤M ,

1. The k-th moment E[W k
n ], k ≥ 1, decreases in dn and so does Pr{Wn ≥ t} for all t ∈ R+,
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2. E[Cn] increases in dn, and

3. Server idle time prior to the arrival of customer n, E[(Dn − Cn−1)+], increases in dn (with

Z+ defined as max(Z, 0) for a given real random variable Z).

An implication of Corollary 1 is that the optimal appointment time for customer n is the smallest

dn that meets the service level constraint (e.g., E[Wn] ≤ SL). Since E[W k
n ] (and also Pr{Wn ≥ t})

is continuous and strictly decreasing in dn, d∗n can be computed efficiently.

To illustrate the appointment schedules generated using the above approach, we consider a

setting with 12 customers and nine scenarios that correspond to different combinations of pa-

rameter values for show up and non-punctuality as specified in Table 1 (other parameter values

are specified in Table 2). The scenarios cover cases with homogeneous/heterogeneous and sym-

metric/asymmetric non-punctuality; and cases with homogeneous/heterogeneous no-shows with

no-show probabilities ranging from 5% to 30% as suggested in [3]. In practice, information about

customers’ no-show and non-punctuality may be available for returning customers based on their

visit history. It may also be possible to estimate this information from customer characteristics,

such as age, type of service being provided, cell phone ownership, and travel distance from home.

Data analytics approaches could be employed for this purpose (Cheong et al. [5], Mohammadi et

al. [32]).

In Table 2, we provide numerical results for the optimal time between consecutive appointments

(i.e., the difference between d∗n and d∗n−1). We also provide corresponding results for expected

waiting time averaged over customers 2 to M (in the optimization problem, d∗1 = τ1 is exogenously

specified) and expected total completion time, E[CM ]. The results in Table 2 illustrate how the time

between appointments is affected by the show up and non-punctuality characteristics of different

customers. The results from Scenarios 1-5 (customers having similar non-punctuality but different

no-show characteristics) show how different no-show profiles lead to different schedules, illustrating

the importance of accounting for no-shows. Scenarios 1, 2, and 5 illustrate, perhaps as expected,

that lower show up probabilities lead to shorter times between appointments. The results for

Scenarios 3 and 4 illustrate how time between appointments are affected by patterns of customer

show up behavior, with higher (lower) show up probabilities associated with higher (lower) time

between appointments.
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Table 1: Scenarios for the experiments

Scenarios Varying Parameters

0 τn = τ = 0, and αn = α = 1

1

τn = τ = 2

α1 = α2 = · · · = α12 = 0.95

2 α1 = α2 = · · · = α12 = 0.75

3 α1 = 0.95; α2 = 0.75; α3 = 0.95; . . . ; and α12 = 0.75

4 α1 = α2 = · · · = α6 = 0.95; and α6 = α7 = · · · = α12 = 0.75

5 τ1 = τ2 = · · · = τ12 = 2

6

αn = α = 1

τ1 = τ2 = · · · = τ12 = 4

7 τ1 = 6; τ2 = 2; τ3 = 6; . . . ; and τ12 = 2

8
τu1 = 6; τu2 = 2; τu3 = 6; τu4 = 2; . . . ; and τu12 = 2
τ l1 = 2; τ l2 = 6; τ l3 = 2; τ l4 = 6; . . . ; and τ l12 = 6

Table 2: Time between appointments, x∗n−1 (exponential service times, µ = 0.1, M = 12, SL∗ = 5,
and parameters as in Table 1)

n− 1
Scenarios

0 1 2 3 4 5 6 7 8

1 6.93 7.01 4.64 7.01 7.01 7.52 8.29 8.70 5.46
2 15.06 14.58 12.35 12.34 14.58 15.09 15.21 15.45 19.21
3 15.80 15.34 13.10 15.33 15.34 15.85 16.00 15.90 11.99
4 16.10 15.64 13.40 13.40 15.64 16.14 16.24 16.47 20.29
5 16.24 15.78 13.54 15.77 15.78 16.28 16.42 16.30 12.39
6 16.32 15.86 13.63 13.62 15.86 16.37 16.53 16.69 20.50
7 16.37 15.90 13.67 15.90 13.68 16.41 16.55 16.43 12.56
8 16.40 15.94 13.70 13.71 13.71 16.44 16.55 16.75 20.57
9 16.42 15.96 13.73 15.95 13.73 16.47 16.59 16.51 12.58
10 16.44 15.97 13.74 13.74 13.74 16.48 16.59 16.78 20.62
11 16.45 15.98 13.76 15.98 13.76 16.49 16.64 16.55 12.59

1
M−1

∑M
n=2 E[Wn] 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

E[CM ] 183.54 180.94 156.25 169.77 169.81 186.54 190.60 193.52 189.77
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The results also illustrate the importance of accounting for non-punctuality. The results in

Scenarios 0, 5 and 6 show that higher non-punctuality leads to longer times between appointments

and, therefore, longer expected completion times. The results in Scenarios 6, 7, and 8 illustrate the

impact of heterogeneity in non-punctuality (i.e., differences in non-punctuality among customers).

In particular, the results show that higher heterogeneity leads to longer times between appointments

and longer completion times (e.g., contrast the results for Scenario 6 with those for Scenario 7).

This effect can perhaps be explained by the fact that higher heterogeneity in non-punctuality

translates into higher variability in customer inter-arrival times. The results for Scenario 8 show

that asymmetric non-punctuality can have a significant impact on the time between appointments,

with customers more likely to be late (early) scheduled later (earlier).

Although the numerical results shown in Table 2 are for scenarios where the time between

appointments is mainly either increasing or alternating between increasing and then decreasing, it

is easy to construct scenarios where this is not the case. In particular, depending on the combination

of no-show and non-punctuality parameters of the different customers, it is possible to observe other

patterns, including a pattern of increasing and then decreasing time between appointments (dome-

shaped), deceasing and then increasing (valley-shaped), or indeterminate. For brevity, results for

such scenarios are omitted.

Next, we contrast the individualized appointment schedules generated using our online approach

(as illustrated in Table 2) to those generated using an approach in which appointments are equally

spaced (as illustrated in Table 3). Equally spaced schedules are not uncommon in practice and

have been extensively considered in the literature. For the results shown in Table 3, the time

between appointments is generated using the same objective of minimizing the overall expected

completion time. Specifically, to allow for a fair comparison, the time between appointments is

chosen to be the smallest value such that either E[Wn] ≤ SL∗, for 2 ≤ n ≤ M (Case 1 in Table

3) or 1
M−1

∑M
n=2 E[Wn] ≤ SL∗ (Case 2 in Table 3). Case 1 corresponds to the situation where we

require that each customer experience an expected waiting time less than the threshold while Case

2 corresponds to the case where we require the expected waiting time averaged over all customers

is less than the threshold. Note that, under Case 2, some customers may experience an expected

waiting time that is larger than the threshold.

Note that to generate the equally spaced schedules, we assume that we wait for all customer
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Table 3: Customer’s expected waiting time, E[Wn], with equally spaced appointment schedule
(exponential service times, µ = 0.1, M = 12, SL∗ = 5, and parameters as in Table 1)

Case 1
Scenarios

0 1 2 3 4 5 6 7 8

1 0.00 0.50 0.50 0.50 0.50 0.50 1.00 1.50 2.25
2 1.96 2.07 2.04 2.26 2.19 2.07 2.20 2.29 1.49
3 2.97 3.04 3.01 2.77 3.26 3.04 3.13 3.23 3.60
4 3.60 3.64 3.61 3.75 3.94 3.64 3.71 3.74 2.62
5 4.01 4.04 4.02 3.68 4.41 4.04 4.10 4.17 4.41
6 4.30 4.32 4.30 4.39 4.75 4.32 4.37 4.37 3.07
7 4.51 4.53 4.51 4.12 5.00 4.53 4.56 4.62 4.75
8 4.67 4.68 4.67 4.71 4.46 4.68 4.70 4.70 3.28
9 4.79 4.79 4.78 4.36 4.17 4.79 4.81 4.86 4.91
10 4.88 4.88 4.87 4.89 4.01 4.88 4.89 4.88 3.39
11 4.95 4.95 4.94 4.49 3.90 4.95 4.95 5.00 5.00
12 5.00 5.00 5.00 5.00 3.84 5.00 5.00 4.99 3.45

x∗ 16.29 15.83 13.59 14.96 15.25 16.33 16.47 16.50 17.56

1
M−1

∑M
n=2 E[Wn] 4.15 4.18 4.16 4.04 3.99 4.18 4.22 4.26 3.63

E[CM ] 194.15 191.08 166.48 181.60 183.58 196.66 200.19 202.51 212.59

Case 2
Scenarios

0 1 2 3 4 5 6 7 8

1 0.00 0.50 0.50 0.50 0.50 0.50 1.00 2.25 1.50
2 2.19 2.30 2.27 2.55 2.49 2.30 2.43 1.81 2.52
3 3.39 3.45 3.42 3.23 3.81 3.45 3.54 4.49 3.62
4 4.17 4.20 4.18 4.44 4.71 4.20 4.26 3.47 4.26
5 4.72 4.74 4.72 4.47 5.37 4.74 4.76 5.77 4.80
6 5.13 5.13 5.12 5.35 5.87 5.13 5.13 4.28 5.10
7 5.44 5.42 5.43 5.13 6.27 5.42 5.41 6.43 5.43
8 5.68 5.66 5.66 5.88 5.71 5.65 5.62 4.73 5.57
9 5.87 5.84 5.85 5.53 5.41 5.84 5.79 6.81 5.79
10 6.02 5.98 6.00 6.20 5.23 5.98 5.92 5.00 5.86
11 6.14 6.10 6.13 5.79 5.10 6.10 6.03 7.04 6.02
12 6.24 6.19 6.23 6.41 5.02 6.19 6.11 5.17 6.04

x∗ 15.21 14.78 12.54 13.73 13.97 15.29 15.48 15.63 15.56

1
M−1

∑M
n=2 E[Wn] 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

E[CM ] 183.54 180.80 156.13 169.39 170.66 186.41 190.38 193.07 193.16
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requests for appointments to be realized before appointment times are determined. In other words,

appointment times are not generated online at the time customers request one. We do so to allow

for a fair comparison between the two approaches and to generate insights into the performance of

each.

Considering first the results of Case 1 (and contrasting them with the results in Table 2),

we can see that requiring appointments to be equally spaced leads to higher expected completion

times. The longer expected completion times are due to the fact that, in Case 1, additional slack

time must be inserted to ensure that all the expected waiting times for all customers are within the

threshold. Moreover, we can see that requiring appointments to be equally spaced leads to greater

differences (than those observed in the results of Table 2) among the completion times under the

different scenarios. This is because an approach that allows for appointments to be unequal is more

effective at adjusting the schedule in accordance to the characteristics of various customers (e.g.,

their punctuality).

Considering the results of Case 2 (and contrasting them again with the results in Table 2),

we can see that the expected completion times are much more comparable, especially in settings

without too much heterogeneity in no-shows and non-punctuality. This is of course achieved at the

expense of having some customers (more than half in the cases shown) experience a longer expected

waiting time than the threshold SL∗.

We conclude this section with the following three extended remarks.

Remark 1: Stopping criteria for customer scheduling. We have so far assumed that the

number of customers M is exogenously specified. In many applications, the number of customers

who can be scheduled is constrained by the total time the service facility is available. In the context

of a healthcare facility, this would correspond to the facility’s number of working hours in a day. In

that case, customers are provided an appointment in a given day as long as the quoted appointment

time falls within the facility’s working hours. In other words, the last customer, denoted by M∗, to

be given an appointment in a given day is given by M∗ = arg max
n≥2

(dn ≤ dmax), where dmax refers

to the facility’s closing time (or some other threshold for the latest allowed appointment time).

Alternatively, M∗ could be chosen so that the expected completion time is before the closing time

(or some other threshold). That is, M∗ = arg max
n≥2

(E[Cn] ≤ dmax). Customers who cannot be

scheduled in a given day are scheduled at the next feasible future day.
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Remark 2: The traditional formulation of the appointment scheduling problem. In

contrast to the online scheduling approach we describe in this paper, the approach studied in much

of the existing literature is offline and assumes that appointment times are generated once the set

of customers requesting appointments is known. That is, appointments are generated for all the

customers at once. Such an approach is appropriate when customers do not expect an appointment

immediately upon making a request and the service facility has flexibility in informing them later

of their appointment times. More significantly, much of the existing literature adopts a cost-based

formulation for the objective function, with appointments generated so as to minimize a weighted

sum of customer waiting cost and facility service cost that is increasing in the completion time of

the last customer. In other words, the objective is to generate appointment times that minimize

a function of the form G(x1, . . . , xM−1) = Gw(W1, . . . ,WM ) + Gc(CM ), where Gw(.) and Gc(.)

are, respectively, cost functions associated with customer waiting and the utilization of the service

facility. Instantiations of these functions can be found in, among others, [2, 7, 13, 44, 40], with

linear functions being the most common.

Whether the online or the offline approach, with a service level constraint or a cost-based

objective function, is appropriate would depend on the requirements of the application. Note

that both the service level-based and the cost-based approach do address the trade-off, though

differently, between customer waiting time and service facility utilization. In fact, the cost-based

approach has the features of a Lagrangian relaxed version of the service level-based approach (with

the constraint elevated into the objective function). Moreover, if the cost function associated with

customer waiting is convex (instead of being linear), then the optimal solution generated by the

cost-based approach would tend to limit the differences in waiting time across customers.

Remark 3: Patterns in time between appointments. It has been shown in the literature

that time between appointments produced by an approach that minimizes the sum of linear costs of

waiting time and service facility utilization tends to be first increasing and then decreasing (or dome-

shaped). This is the case when customers are homogeneous in their no-show and non-punctuality

parameters. Under the online and service level-based approach, the time between appointments

is increasing when customers are homogeneous. For both formulations, customer heterogeneity

breaks down the consistency in the time between appointment patterns.
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6 An approximate approach

The exact approach described in Section 3 can be computing-intensive when the number of cus-

tomers is large. Much of this computational effort is exerted in characterizing the functions hn,j for

every combination of n and j (recall that hn,j is the pdf of the inter-arrival time between customers

n and n+1, given that customer n encounters (would have encountered) j customers in the system

if she shows up (she does not)). In this section, we examine the extent to which approximating

the function hn,j by the function hn, the unconditional inter-arrival time between customer n and

n+ 1, can be effective. With this change, the state probability pn,i would be approximated by p̃n,i,

where p̃1,0 = p1,0 = 1, p̃2,1 = p2,1, p̃2,0 = p2,0, and

p̃n,i = αn−1

n−2∑
j=i−1

p̃n−1,j

∫ dn−dn−1+τun+τ ln−1

dn−dn−1−τ ln−τun−1

(µx)j+1−i

(j + 1− i)!
e−µxhn−1(x) dx (35)

+ (1− αn−1)

n−2∑
j=i

p̃n−1,j

∫ dn−dn−1+τun+τ ln−1

dn−dn−1−τ ln−τun−1

(µx)j−i

(j − i)!
e−µxhn−1(x) dx,

with p̃n,0 = 1−
n−1∑
i=1

p̃n,i, for 3 ≤ n ≤M and 1 ≤ i ≤ n− 1. Note that Equation (35) gives the exact

value for pn,i under the case of punctual customers.

Similarly to Section 3.2.2, we can compute the waiting time distribution for each customer. In

what follows we denote by E[W̃n] the approximated expected value of the waiting time for customer

n.

To evaluate the effectiveness of the approximation, we carried out extensive numerical exper-

iments involving a wide range of combinations of problem parameter values, including the num-

ber of customers, M , the supports of the punctuality distribution, τ l and τu, the probabilities

of no-shows αn, the time between appointments, and the degree of parameter symmetry among

customers. We also considered various distributions for punctuality and service times. Represen-

tative numerical examples are shown (additional results are available upon request) in Tables 5-8

in Appendix D. The scenarios are chosen such that we vary the value of one parameter at a time,

keeping all other parameters fixed. In each case, we obtain the values E[W ] and E[W̃ ], the ex-

act and approximated expected values for waiting time averaged over all the customers, where

E[W ] = 1
M

∑M
n=1 αnE[Wn] and E[W̃ ] = 1

M

∑M
n=1 αnE[W̃n]. We also report on the percentage

difference in these values, ∆W = E[W̃ ]−E[W ]
E[W ] × 100%.
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The following observations can be made.

• In most of the cases shown, the difference between the approximated and exact values are a

few percentages (the average across all cases is less than 6%).

• The percentage difference increases with the number of customers and with the width of the

range of non-punctuality, τ l+τu. However, the increase in the differences appears to increase

in all cases at a decreasing rate, suggesting that there may be a cap on the maximum amount

of discrepancy between the approximated and exact values.

• The effect of increasing the no-show probability has a non-monotonic effect on the percentage

difference between the approximated and exact value, first increasing and then decreasing,

suggesting that the percentage difference increases with the uncertainty about no-shows.

• The gains in computational effort from using the approximation can be substantial when the

number of customers is large. For example, for a system with 10 customers, the approximate

method computes the waiting time distribution within 10 seconds while the exact method

takes approximately 2.5 minutes. Within 2.5 minutes, the approximate method can evaluate

the performance of a system with 30 customers. This would take approximately 4 hours for

the exact method (see Figure 5 in Appendix D for an illustration).

We also observe that the approximation consistently yields an upper bound on the exact value

of expected waiting time. In what follows, we provide analytical support for this observation. In

particular, we show that, under the assumption that non-punctuality has the uniform distribu-

tion, that the expected waiting time for each customer is bounded above by the expected waiting

produced by the approximation. We first define the following concepts.

Definition 2.

1. For x = (x1, . . . , xn) ∈ Rn, let x(1) ≤ · · · ≤ x(n) denote the components of x in increasing

order. Then, x↑ = (x(1), . . . , x(n)) is called the increasing arrangement of x.

2. For x, y ∈ Rn, x is said to be weakly supermajorized by y (denoted as x ≺w y), if

k∑
1

x(i) ≥
k∑
1

y(i)
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for k = 1, . . . , n.

Proposition 3. If customer non-punctuality has the uniform distribution, i.e.,

fn(x) =


1

τ ln+τun
if x ∈ [dn − τ ln, dn + τhn ] and

0 otherwise,

then the expected waiting time of customer n is bounded above by expected waiting time obtained

from the approximation, i.e.,

E[Wn] ≤ E[W̃n], (36)

for 1 ≤ n ≤M . Moreover,

(p̃n,i≥0, p̃n,i≥1, · · · , p̃n,i≥n−1) ≺w (pn,i≥0, pn,i≥1, · · · , pn,i≥n−1), (37)

for 1 ≤ n ≤M , where p̃n,i≥l =
∑n−1

i=l p̃n,i and pn,i≥l =
∑n−1

i=l pn,i.

A sketch of the proof is as follows (a detailed proof is given in Appendix C.3). We use induction

to prove (37), which by definition leads to (36) using the following inequality

E[Wn] =

n−1∑
l=1

pn,i≥l ≤
n−1∑
l=1

p̃n,i≥l = E[W̃n] . (38)

Under the exact and approximate methods, we recursively compute pn,i and p̃n,i by first conditioning

on the system states observed by customer n upon her arrival (as in (8)) and further by conditioning

on the inter-arrival time (as in (9)). In contrast to the exact method, where the latter conditioning is

taken based on the former one, the approximate method treats the two conditionings independently.

When computing pn,i and p̃n,i in the proof, we switch the order of conditionings and extend the

inequality generated from the induction assumption of (37) at n−1 across the conditionings, which

implies that (37) holds at n.

Finally note that the approximate method can be used instead of the exact one for the ap-

pointment scheduling problem in Section 5. In the case of uniform-distributed non-punctuality,

Proposition 3 ensures that the appointment times obtained from the approximation lead to waiting

times that are below the service level thresholds. In other words, the obtained solution using the
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approximation is always feasible. We have repeated the experiments in Table 2 using the approxi-

mate method in order to assess its quality for the online optimization problem. The results shown

in Table 4 illustrate the quality of the approximation. For each value in this table, we provide

between parentheses the corresponding optimal value from Table 2. We observe that the obtained

times between appointments, while being longer, are quite close to the optimal ones. The average

absolute difference (excluding the punctual case of Scenario 0) is 0.099 and the average relative

difference is 0.634%. This is useful given the computational efficiency of the approximation.

Table 4: Time between appointments obtained using the approximate method (exponential service
times, µ = 0.1, M = 12, SL∗ = 5, and parameters as in Table 1)

n− 1
Scenarios

0 1 2 3 4 5 6 7 8

1
6.93 7.01 4.64 7.01 7.01 7.52 8.29 8.70 5.46

(6.93) (7.01) (4.64) (7.01) (7.01) (7.52) (8.29) (8.70) (5.46)

2
15.06 14.64 12.40 12.40 14.64 15.15 15.43 15.53 19.43

(15.06) (14.58) (12.35) (12.34) (14.58) (15.09) (15.21) (15.45) (19.21)

3
15.80 15.39 13.15 15.38 15.39 15.90 16.18 16.27 12.18

(15.80) (15.34) (13.10) (15.33) (15.34) (15.85) (16.00) (15.90) (11.99)

4
16.10 15.68 13.45 13.45 15.68 16.19 16.46 16.56 20.47

(16.10) (15.64) (13.40) (13.40) (15.64) (16.14) (16.24) (16.47) (20.29)

5
16.24 15.82 13.59 15.82 15.82 16.33 16.61 16.69 12.61

(16.24) (15.78) (13.54) (15.77) (15.78) (16.28) (16.42) (16.30) (12.39)

6
16.32 15.91 13.68 13.68 15.91 16.42 16.68 16.77 20.68

(16.32) (15.86) (13.63) (13.62) (15.86) (16.37) (16.53) (16.69) (20.50)

7
16.37 15.95 13.72 15.95 13.73 16.46 16.73 16.82 12.73

(16.37) (15.90) (13.67) (15.90) (13.68) (16.41) (16.55) (16.43) (12.56)

8
16.40 15.99 13.75 13.75 13.75 16.49 16.76 16.85 20.76

(16.40) (15.94) (13.70) (13.71) (13.71) (16.44) (16.55) (16.75) (20.57)

9
16.42 16.00 13.78 16.00 13.78 16.51 16.78 16.87 12.78

(16.42) (15.96) (13.73) (15.95) (13.73) (16.47) (16.59) (16.51) (12.58)

10
16.44 16.02 13.79 13.79 13.79 16.53 16.80 16.89 20.80

(16.44) (15.97) (13.74) (13.74) (13.74) (16.48) (16.59) (16.78) (20.62)

11
16.45 16.03 13.80 16.03 13.80 16.54 16.80 16.90 12.80

(16.45) (15.98) (13.76) (15.98) (13.76) (16.49) (16.64) (16.55) (12.59)

1
M−1

∑M
n=2 E[Wn] 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

E[CM ] 183.54 181.44 156.76 170.27 170.31 187.04 192.53 195.84 191.70
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7 Concluding remarks

In this paper, we studied a queueing system where the arrivals of customers are driven by appoint-

ments. We considered a continuous time setting where customers are not necessarily punctual and

may not show up at all, with both punctuality and no-shows being heterogeneous across customers.

We developed both exact and approximate approaches for characterizing the distribution of waiting

for each customer and showed that the approximation provides an upper bound for the expected

customer waiting time when non-punctuality is uniformly-distributed. We illustrated how our ap-

proach can be used to support online appointment scheduling that guarantees a specified service

level for each customer. We also examined the impact of non-punctuality on system performance

and provided a proof that non-punctuality deteriorates waiting time performance regardless of the

distribution of inter-arrival times.

There are several avenues for future research. For example, it would be of interest to extend

the analysis to systems with multiple servers, systems with walk-in customers, and systems with

differing customer priorities. Such extensions would complement existing results; see for example

Zacharias and Yunes [44] and Zacharias and Pinedo [43] for systems with multiple servers and walk-

ins in discrete time and Wang et al. [40] for systems with walk-ins. It would also be of interest

to extend the analysis by relaxing the non-overlapping assumption regarding the non-punctuality

of consecutive customers. This is particularly important when the variability of non-punctuality is

high (Cayirli and Veral [3]). A good starting point is Samorani and Ganguly [35], which considers

the “Wait-Preempt Dilemma” arising when customers do not arrive according to their scheduled

order. Finally, it would be useful to carry out comparative studies grounded in specific applications

from practice to assess the real world benefit from using an appointment scheduling approach that

accounts for non-punctuality and no-shows. In doing so, it would be useful to compare outcomes

under different appointment scheduling approaches (e.g., online scheduling vs offline and cost-based

vs. service level-based) and the sensitivity of each to non-punctuality and no-shows.
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Appendix A Triangular distribution for punctuality

Consider the case where customer non-punctuality is homogeneous and follows a symmetric trian-

gular distribution. For 1 ≤ n ≤M , we have

fn(x) =



(x−dn+τ)
τ2

if dn − τ ≤ x < dn,

(dn+τ−x)
τ2

if dn ≤ x ≤ dn + τ, and

0 otherwise.

(39)

Similarly to the uniform distribution case, we calculate p2,1 to complete the initialization step,

since we have f1(t) from the definition of fn(t) and p2,0 = 1− p2,1. Here, we have Pr{D1 < d1} =

Pr{D1 ≥ d1} =
1

2
. When customer 1 arrives before d1, we have

p2,1|D1<d1 =

∫ d2−d1+τ

d2−d1−τ
e−µxf2(x+ d1) dx

=

∫ d2−d1

d2−d1−τ
e−µx

(x+ d1 − d2 + τ)

τ2
dx+

∫ d2−d1+τ

d2−d1
e−µx

(d2 + τ − x− d1)

τ2
dx

=
(eµτ − 1)2 e−µ(−d1+d2+τ)

µ2τ2
. (40)
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To derive p2,1|D1>d1 , we first compute h2,1|D1≥d1(x), the pdf of the random variableD2−D1|D1 ≥ d1.

Using (7), we can compute h1|D1≥d1(x) on [d2 − d1 − τ l2 − τu1 , d2 − d1 + τu2 ] as

h2,1|D1≥d1(x) =

∫ min{d2+τ, d1+τ+x}

max{d2−τ, d1+x}
f2(u)f1|D1≥d1(u− x) du

=

∫ min{d2+τ, d1+τ+x}

max{d2−τ, d1+x}
f2(u)

f1(u− x)

F̄1(d1)
du

=
2

τ4

(
1{d1+x≤d2}

∫ d2

max{d2−τ, d1+x}
(u− d2 + τ)(d1 + τ − u+ x) du

+ 1{d2≤d1+x+τ}

∫ min{d2+τ, d1+τ+x}

d2

(d2 + τ − u)(d1 + τ − u+ x) du

)
=

2

τ4

[
1{d1+x≤d2}Cmin

(
τ +

(Cmin)2

6τ
− Cmin

2
− 1

2
(d2 − d1 − x)

)
+ 1{d2≤d1+x+τ}Dmin

(
1

2
(x+ d1 − d2 + τ)− 1

6τ
Dmin

2

)]
, (41)

where Cmin = min{τ, d2−d1−x} and Dmin = min{τ, d1 + τ +x−d2}. By substituting h1|D1≥d1(x)

in Equation (4) by (41), we obtain

p2,1|D1≥d1 =

∫ d2−d1+τu2

d2−d1−τ l2−τu1
e−µxh1|D1≥d1(x) dx

=

∫ d2−d1

d2−d1−τ l2−τu1
e−µxCmin

(
τu1 +

(Cmin)2

6τ l2
− τu1 Cmin

2τ l2
− 1

2
(d2 − d1 − x)

)
dx

+

∫ d2−d1+τu2

d2−d1−τu1
e−µxDmin

(
1

2
(x+ d1 − d2 + τu1 )− 1

6τu2
Dmin

2

)
dx

= −
(
µ2τ2e3µτ (2µτ − 3) + µ2τ2(5µτ + 3) + 12e2µτ − 6eµτ (µτ(µτ + 2) + 2)

)
e−µ(−d1+d2+τ)

3µ4τ4
.

(42)

With (40) and (42), we complete the initialization step by computing p2,1 as

p2,1 = α1Pr{D1 < d1}p2,1|D1<d1 + α1Pr{D1 ≥ d1}p2,1|D1≥d1

=
α1

(
−5µ3τ3 − µ2τ2e3µτ (2µτ − 3) + 3e2µτ

(
µ2τ2 − 4

)
+ 12eµτ (µτ + 1)

)
e−µ(−d1+d2+τ)

6µ4τ4
.
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Appendix B Details for the analysis of γ−Cox-distributed service

times

The moments of the waiting time can be obtained similarly to the exponential service time case.

We have

E[W k
n ] =

(n−1)m∑
r=1

pn,rE[W k
n,r], (43)

for 2 ≤ n ≤ M , where Wn,r is the random variable denoting the waiting time in the queue of

customer n, given that customer n shows up and finds r actual phases of service in system remain

to be serviced (i.e., the system state Rn is r). Since service times follows independent γ-Cox

distribution with m phases, the completion time of each phase is independently and exponentially-

distributed with rate γ. Therefore, Wn,r has an r-Erlang distribution with r phases and rate γ per

phase. Using Equation (43) and knowing that E[Wn,r] =
r

γ
and E[W 2

n,r] =
r(r + 1)

γ2
, we obtain

E[Wn] =

(n−1)m∑
r=1

pn,r
r

γ
and E[W 2

n ] =

(n−1)m∑
r=1

pn,r
r(r + 1)

γ2
, (44)

for 2 ≤ n ≤M . Moreover, we have

Pr{Wn,r < t} = 1−
r−1∑
j=0

(γt)j

j!
e−γt, (45)

for t ≥ 0. Consequently,

Pr{Wn < t} = pn,0 +

(n−1)m∑
r=1

pn,rPr{Wn,r < t} (46)

= 1−
(n−1)m∑
r=1

r−1∑
j=0

pn,r
(γt)j

j!
e−γt.

The case n = 1 is treated separately. The moments and distribution of the first customer’s waiting

time can be obtained exactly the same as for the exponential case, using Equations (19)-(21).
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Appendix C Proof of Propositions

C.1 Proof of Proposition 1

We first state several definitions and lemmas that will be used in the proof. We denote by Sn the

random variable of the service time of customer n, and by An the random variable for the arrival

time of customer n. For a given schedule δ = (d1, d2, · · · , dM ), we have An = Dn if customer n is

not punctual, and An = E[Dn] if customer n is punctual.

We use γn ∈ {0, 1} to denote the type of punctuality of customer n, where γn = 0 if customer

n arrives with non-punctuality at time Dn ∈ [dn − τ ln, dn + τun ], and γn = 1 if customer n arrives

with punctuality at time E[Dn]. Let us denote by Γ = (γ1, · · · , γM ) the customer’s punctuality

profile and use An(Γ), Wn(Γ), and Cn(Γ) to represent the arrival, waiting, and completion time of

customer n under the profile Γ, where An(Γ) = Dn if γn = 0, and An(Γ) = E[Dn] if γn = 1. For

0 ≤ k ≤M , let Γk denote the profile where the first k customers are punctual and the last M − k

customers are non-punctual.

For ak, sk ∈ R, let ~ak = (a1, · · · , ak), and ~sk = (s1, · · · , sk). For k = 0, · · · ,M , we define the

function hk(~ak, ~sk) : R2k → R as follows:

h0(~a0, ~s0) = h0 = d1,

hk(~ak, ~sk) = max(hk−1(~ak−1, ~sk−1), ak) + sk for k = 1, · · · ,M.

Proposition 4. For k ∈ {1, · · · ,M}, hn(~an, ~sn) is convex with respect to ak for k ≤ n ≤M .

Proof. First, note that the function hk−1(~ak−1, ~sk−1) only relies on the first k − 1 elements of

~an and ~sn, and is constant with respect to al and sl, for l ≥ k. From standard results, we

know that max(C, f(x)) is convex in x if f(x) is convex in x and C is constant with respect to

x. It is then easy to see that hk(~ak, ~sk) = max(hk−1(~ak−1, ~sk−1), ak) + sk is convex in ak. Let

us consider n > k and assume that hn−1(~an−1, ~sn−1) is convex in ak. Again, we can see that

hn(~an, ~sn) = max(hn−1(~an−1, ~sn−1), an) + sm+1 is convex in ak. Therefore, by induction, we have

shown that hn(~an, ~sn) is convex in ak for all n ≥ k, which finishes the proof of the proposition.
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For 1 ≤ k ≤ n ≤M , we define the functions gn,k and ĝn,k : R2n−2 → R as follows. If n = k,

gk,k((a1, · · · , ak−1), ~sk−1) = E[(hk−1((a1, · · · , ak−1), ~sk−1)−Dk)
+],

ĝk,k((a1, · · · , ak−1), ~sk−1) = (hk−1((a1, · · · , ak−1), ~sk−1)− E[Dk])
+.

Otherwise, for n > k,

gn,k((a1, · · · , ak−1, ak+1, · · · , an), ~sn−1) = E[(hn−1((a1, · · · , ak−1, Dk, ak+1, · · · , an−1), ~sn−1)− an)+],

ĝn,k((a1, · · · , ak−1, ak+1, · · · , an), ~sn−1) = (hn−1((a1, · · · , ak−1,E[Dk], ak+1, · · · , an−1), ~sn−1)− an)+.

By applying Jensen’s inequality and Proposition 4, we may write

gn,k ≥ ĝn,k, (47)

uniformly on R2n−2, for 1 ≤ k ≤ n ≤M .

Next, we show that for a fixed schedule δ = (d1, d2, · · · , dM ), the expected waiting time of

all customers decreases as we have more punctual customers at the beginning of the schedule. In

particular, we want to show

E[Wn(Γk−1)] ≥ E[Wn(Γk)] for n = 1, 2, · · · ,M, (48)

for every k = 1, 2, · · · ,M . This means the customer’s expected waiting time under the case where all

customers are non-punctual (i.e., E[Wn(Γ0)]) is higher than that under the case where all customers

are punctual (i.e., E[Wn(ΓM )]).

Let C0 = d1. Therefore, the waiting time and completion time of each customer can be charac-

terized by the following equations:

Wn = (Cn−1 −An)+,

Cn = max(Cn−1, An) + Sn .

Let ~An(Γ) = (A1(Γ), A2(Γ), · · · , An(Γ)) and ~Sn = (S1, S2, · · · , Sn) denote respectively the random

vectors of the arrival times and service times of the first n customers with the punctuality profile
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Γ. It follows that

Wn(Γ) = (Cn−1(Γ)−An(Γ))+ for n = 1, · · · ,M , and

Cn(Γ) =


h0 = d1 for n = 0

hn( ~An(Γ), ~Sn) for n = 1, · · · ,M.

Consider a fixed k = 1, · · · ,M . The first k−1 customers are punctual under both profiles Γk−1 and

Γk. Hence, the expected waiting for customer n < k are the same (i.e., E[Wn(Γk−1)] = E[Wn(Γk)]

for n < k).

For customer n = k, there are two possible cases. If n = k = 1, we have E[W1(Γ0)] = E[(C0(Γ0)−

A1(Γ0))+] = E[(d1 − D1)+] ≥ (d1 − E[D1])+ = E[(d1 − E[D1])+] = E[(C0(Γ1) − A1(Γ1))+] =

E[W1(Γ1)], where the inequality is obtained by applying Jensen’s inequality. Otherwise, for n =

k > 1, and we have

E[Wk(Γk−1)]

=E[(Ck−1(Γk−1)−Ak(Γk−1))+]

=E[(hk−1( ~Ak−1(Γk−1), ~Sk−1)−Dk)
+]

=E[E[(hk−1( ~Ak−1(Γk−1), ~Sk−1)−Dk)
+ | A1(Γk−1), · · · , Ak−1(Γk−1), ~Sk−1]]

=E[gk,k( ~Ak−1(Γk−1), ~Sk−1)]

=E[gk,k( ~Ak−1(Γk), ~Sk−1)]

≥E[ĝk,k( ~Ak−1(Γk), ~Sk−1)]

=E[(hk−1( ~Ak−1(Γk), ~Sk−1)− E[Dk])
+]

=E[(Ck−1(Γk)−Ak(Γk))+]

=E[Wk(Γk)].

The inequality is due to (47) and also the fact that the functions gn,k and ĝn,k are integrable given
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the finite range of customer’s non-punctuality. Similarly, for customer n > k, we obtain

E[Wn(Γk−1)]

=E[(Cn−1(Γk−1)−An(Γk−1))+]

=E[(hn−1( ~An−1(Γk−1), ~Sn−1)−An(Γk−1))+]

=E[E[(hn−1( ~An−1(Γk−1), ~Sn−1)−An(Γk−1))+ | A1(Γk−1), · · · , Ak−1(Γk−1), Ak+1(Γk−1), · · · , An(Γk−1), ~Sn−1]]

=E[gn,k(A1(Γk−1), · · · , Ak−1(Γk−1), Ak+1(Γk−1), · · · , An(Γk−1), ~Sn−1)]

=E[gn,k(A1(Γk), · · · , Ak−1(Γk), Ak+1(Γk), · · · , An(Γk), ~Sn−1)]

≥E[ĝn,k(A1(Γk), · · · , Ak−1(Γk), Ak+1(Γk), · · · , An(Γk), ~Sn−1)]

=E[(hn−1(A1(Γk), · · · , Ak−1(Γk),E[Dk], Ak+1(Γk), · · · , An−1(Γk), ~Sn−1)−An(Γk))
+]

=E[(hn−1( ~An−1(Γk), ~Sn−1)−An(Γk))
+]

=E[(Cn−1(Γk)−An(Γk))
+]

=E[Wn(Γk)].

In conclusion, we have proved that (47) holds and that E[Wn(Γ0)] ≥ E[Wn(ΓM )], which finishes

the proof of the proposition.

C.2 Proof of Proposition 2

Proof. Consider customer n with the two possible appointment times d̂n and dn, such that d̂n > dn.

For these two appointment times, the random variables D̂n and Dn correspond to the arrival times,

V̂n = Cn−1 − D̂n and Vn = Cn−1 −Dn correspond to the difference between the completion time

of customer n− 1 and the arrival time of customer n, and Ŵn = max(0, V̂n) and Wn = max(0, Vn)

correspond to the waiting times, respectively. In what follows, we prove that Wn FOS dominates

Ŵn.

For t ∈ [d̂n − τ ln, d̂n + τun ], we have f
V̂n

(t) = fVn(t − (d̂n − dn)). Since d̂n − dn > 0, D̂n is

stochastically larger than Dn. In other words, D̂n FOS dominates Dn. Thus, −D̂n FOS dominates

−Dn, which implies given the independence of Cn−1, D̂n and Dn that Cn−1 − D̂n FOS dominates

Cn−1 −Dn. Since max(·, 0) is a non-decreasing function, we have Ŵn FOS dominates Wn, which

completes the proof of the proposition.
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C.3 Proof of Proposition 3

When arrival times are uniformly-distributed, we would like to prove that the expected waiting time

of customer n computed using the exact method, E[Wn], is bounded above by the one computed

using the approximate method, E[W̃n]. In other words, we want to show that

E[Wn] ≤ E[W̃n] , for 1 ≤ n ≤M, (49)

with fn(x) =
1

τ ln + τun
on [dn − τ ln, dn + τun ] and fn(x) = 0 otherwise.

Moreover, we want to prove

(p̃n,i≥0, p̃n,i≥1, · · · , p̃n,i≥n−1) ≺w (pn,i≥0, pn,i≥1, · · · , pn,i≥n−1),

for 1 ≤ n ≤M , where p̃n,i≥l =
∑n−1

i=l p̃n,i and pn,i≥l =
∑n−1

i=l pn,i.

First, we state several definitions and results that will be used throughout the proof. For any

x = (x1, . . . , xn) ∈ Rn, let x[1] ≥ · · · ≥ x[n] denote the components of x in decreasing order, and

let x↓ = (x[1], . . . , x[n]) denote the decreasing rearrangement of x. Similarly, let x(1) ≤ · · · ≤ x(n)

denote the components of x in increasing order, and let x↑ = (x(1), . . . , x(n)) denote the increasing

arrangement of x. Let D denote the subspace of descending vectors in Rn, in particular D =

{(x1, . . . , xn) : x1 ≥ · · · ≥ xn}. Similarly, we have D+ = {(x1, . . . , xn) : x1 ≥ · · · ≥ xn ≥ 0}.

Definition 3. For x, y ∈ Rn,

x ≺w y if
k∑
1

x[i] ≤
k∑
1

y[i], k = 1, . . . , n,

and

x ≺w y if

k∑
1

x(i) ≥
k∑
1

y(i), k = 1, . . . , n.

x is said to be weakly submajorized by y, if x ≺w y, and x is said to be weakly super-

majorized by y, if x ≺w y. In either case, x is said to be weakly majorized by y (y weakly

majorizes x). Moreover, x is said to be majorized by y (y majorizes x), denoted by x ≺ y if

both cases hold.
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It is easy to see that

x ≺ y ⇔ −x ≺ −y, (50)

x ≺w y ⇔ −x ≺w −y. (51)

Theorem 1. (Theorem A.7, p.86 in [26])

Let φ be a real-valued function, defined and continuous on D, and continuously differentiable on

the interior of D. Denote the partial derivative of φ with respect to its kth argument by φ(k):

φ(k)(z) = ∂φ(z)/∂zk. Then

φ(x) ≤ φ(y) whenever x ≺w y on D,

if and only if,

φ(1)(z) ≥ φ(2)(z) ≥ · · · ≥ φ(n)(z) ≥ 0,

i.e., the gradient ∇φ(z) ∈ D, for all z in the interior of D.

Lemma 1. (Theorem H.3.b, p.136 in [26])

If x, y ∈ D and x ≺w y, then

∑
xiui ≤

∑
yiui for all u ∈ D+.

Proposition 5. If x, y ∈ D and y ≺w x, then for each k ∈ {1, . . . , n}, we have

n∑
i=k

xiui−k+1 ≤
n∑
i=k

yiui−k+1 , for all u ∈ I+,

where I+ = {(x1, . . . , xn) : 0 ≤ x1 ≤ · · · ≤ xn}.

Proof. Take x, y ∈ D with y ≺w x. Let x̂ be the reverse arrangement of x, in particular

x̂i = xn+1−i , for i ∈ {1, . . . , n},

and by definition we have ŷ ≺w x̂. Using Equation (51), we have −ŷ ≺w −x̂ with −x̂ ∈ D and

−ŷ ∈ D. Take u ∈ I+ and let û be the reverse arrangement of u. We have û ∈ D+. Moreover, for
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any k ∈ {1, . . . , n}, we have

(−ŷ1, · · · ,−ŷn−k+1) ≺w (−x̂1, · · · ,−x̂n−k+1),

(−ŷ1, · · · ,−ŷn−k+1) ∈ D, (−x̂1, · · · ,−x̂n−k+1) ∈ D,

(ûk, · · · , ûn) ∈ D+.

It follows from Lemma 1 that

n−k+1∑
i=1

−ŷiûi+k−1 ≤
n−k+1∑
i=1

−x̂iûi+k−1,

and therefore we obtain

n∑
i=k

xiui−k+1 =
n∑
i=k

x̂n+1−iûn+k−i

=

n−k+1∑
i=1

x̂iûi+k−1

≤
n−k+1∑
i=1

ŷiûi+k−1

=

n∑
i=k

ŷn+1−iûn+k−i =

n∑
i=k

yiui−k+1.

Note that this proposition could be also proven by applying Theorem 1 with φ(z) =
∑k

i=1−zn+1−iuk+1−i,

for k ∈ {1, . . . , n}.

Theorem 2 (Chebyshev Integral Inequality). (Theorem 9, p.39 in [31])

Let f and g be real and integrable functions on [a, b] and let them both be either increasing or

decreasing. Then

1

b− a

∫ b

a
f(x)g(x)dx ≥ 1

b− a

∫ b

a
f(x)dx

1

b− a

∫ b

a
g(x)dx.

If one function is increasing and the other is decreasing, the reverse inequality holds.

We use the tilde sign to denote variables computed using the approximation method, such as
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W̃n for customer’s waiting time. Let us define the following notations:

pn,i≥l =
n−1∑
i=l

pn,i,

and

pn,i≤l =

l∑
i=0

pn,i,

for 0 ≤ l ≤ n− 1, and similarly for p̃n,i≥l and p̃n,i≤l. We use g(n, λ) and G(n, λ) to denote the pdf

and cdf of a Poisson distribution with rate λ. We have g(n, λ) = λn

n! e
−λ and G(n, λ) =

∑n
i=0

λi

i! e
−λ

if n ≥ 0, and g(n, λ) = G(n, λ) = 0 otherwise.

Let us recall the differences between the exact and approximate methods we developed in the

main paper. Instead of the conditional distribution of inter-arrival time hn,j(·) used in the exact

method (as shown in Equation (9)), we use the unconditional inter-arrival time distribution hn(·)

as the approximation for 3 ≤ n ≤ M (as shown in Equation (35)). Since no approximation is

involved in the computation of p̃n,i for n = 1, 2, the expected waiting time for customers 1 and 2

are the same from both methods. Therefore, to prove Equation (49), we only need to show

E[Wn] ≤ E[W̃n] , for 3 ≤ n ≤M,

which is equivalent to
n−1∑
l=1

pn,i≥l ≤
n−1∑
l=1

p̃n,i≥l, (52)

for 3 ≤ n ≤M .

In the following, we use induction to prove that

(p̃n,i≥0, p̃n,i≥1, · · · , p̃n,i≥n−1) ≺w (pn,i≥0, pn,i≥1, · · · , pn,i≥n−1), (53)

for 3 ≤ n ≤M . By definition, Equation (53) leads to

n−1∑
l=0

pn,i≥l ≤
n−1∑
l=0

p̃n,i≥l, (54)

which is equivalent to Equation (52), since pn,i≥0 = p̃n,i≥0 = 1.

Initialization: For n = 2, we have p2,i≥l = p̃2,i≥l for l = 0, 1, as no approximation is involved
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when computing p̃n,i. By definition, we have

(p̃2,i≥0, p̃2,i≥1) ≺w (p2,i≥0, p2,i≥1).

Induction: Assume Equation (53) holds for n− 1, which gives

(p̃n−1,i≥0, p̃n−1,i≥1, · · · , p̃n−1,i≥n−2) ≺w (pn−1,i≥0, pn−1,i≥1, · · · , pn−1,i≥n−2). (55)

Let us prove that
n−1∑
l=k

pn,i≥l ≤
n−1∑
l=k

p̃n,i≥l for 0 ≤ k ≤ n− 1. (56)

This reduces to prove that

n−1∑
l=k

pn,i≥l ≤
n−1∑
l=k

p̃n,i≥l for 1 ≤ k ≤ n− 1, (57)

since pn,i≥0 = p̃n,i≥0 = 0.

We start by providing an equivalent formation of Pr{Rn = i | Rn−1 = j} as compared to what is

used in Equations (8) and (9). Instead of conditioning on the inter-arrival time between customers

n−1 and n, we can compute Pr{Rn = i | Rn−1 = j} by conditioning on the arrival time of customer

n− 1, where we have

Pr{Rn = i | Rn−1 = j}

=

∫ dn+τun

dn−τ ln

∫ dn−1+τun−1

dn−1−τ ln−1

Pr{Rn = i | Rn−1 = j,Dn−1 = v,Dn = u}fn−1,j(v)fn(u) dv du

=

∫ dn+τun

dn−τ ln

∫ dn−1+τun−1

dn−1−τ ln−1

[αn−1g(j + 1− i, (u− v)µ) + (1− αn−1)g(j − i, (u− v)µ)]fn−1,j(v)fn(u) dv du,

(58)

for 0 ≤ j ≤ n− 2 and 0 ≤ i ≤ j + 1.
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Thus

n−1∑
l=k

pn,i≥l =
n−1∑
l=k

n−1∑
i=l

pn,i

=
n−1∑
l=k

n−1∑
i=l

n−2∑
j=i−1

pn−1,jPr{Rn = i | Rn−1 = j}

=

n−1∑
l=k

n−1∑
i=l

n−2∑
j=i−1

pn−1,j

∫ dn+τun

dn−τ ln

∫ dn−1+τun−1

dn−1−τ ln−1

[
αn−1g(j + 1− i, (u− v)µ)

+ (1− αn−1)g(j − i, (u− v)µ)
]
fn−1,j(v)fn(u) dv du

=

∫ dn+τun

dn−τ ln
fn(u)

∫ dn−1+τun−1

dn−1−τ ln−1

n−1∑
l=k

n−1∑
i=l

n−2∑
j=i−1

[
αn−1g(j + 1− i, (u− v)µ)

+ (1− αn−1)g(j − i, (u− v)µ)
]
pn−1,jfn−1,j(v) dv du

=

∫ dn+τun

dn−τ ln
fn(u)

∫ dn−1+τun−1

dn−1−τ ln−1

fn−1(v)
n−1∑
l=k

n−1∑
i=l

n−2∑
j=i−1

[
αn−1g(j + 1− i, (u− v)µ)

+ (1− αn−1)g(j − i, (u− v)µ)
]
pn−1,j|Dn−1=v dv du

=

∫ dn+τun

dn−τ ln
fn(u)

∫ dn−1+τun−1

dn−1−τ ln−1

fn−1(v)
[
αn−1

n−2∑
l=k−1

G(l − k + 1, (u− v)µ)pn−1,i≥l|Dn−1=v

+ (1− αn−1)
n−2∑
l=k

G(l − k, (u− v)µ)pn−1,i≥l|Dn−1=v

]
dv du

=

∫ dn+τun

dn−τ ln
fn(u)

[
αn−1

n−2∑
l=k−1

∫ dn−1+τun−1

dn−1−τ ln−1

fn−1(v)G(l − k + 1, (u− v)µ)pn−1,i≥l|Dn−1=v dv

+ (1− αn−1)

n−2∑
l=k

∫ dn−1+τun−1

dn−1−τ ln−1

fn−1(v)G(l − k, (u− v)µ)pn−1,i≥l|Dn−1=v dv
]
du.

(59)
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Since fn−1(v) is constant on [dn−1 − τ ln−1, dn−1 + τun−1], together with Theorem 2, we obtain

∫ dn−1+τun−1

dn−1−τ ln−1

fn−1(v)G(l − k + 1, (u− v)µ)pn−1,i≥l|Dn−1=v dv

≤
∫ dn−1+τun−1

dn−1−τ ln−1

fn−1(v)G(l − k + 1, (u− v)µ) dv

∫ dn−1+τun−1

dn−1−τ ln−1

fn−1(v)pn−1,i≥l|Dn−1=v dv

=EDn−1

[
G(l − k + 1, (u−Dn−1)µ)

] ∫ dn−1+τun−1

dn−1−τ ln−1

fn−1,i≥l(v)pn−1,i≥l dv

=EDn−1

[
G(l − k + 1, (u−Dn−1)µ)

]
pn−1,i≥l

∫ dn−1+τun−1

dn−1−τ ln−1

fn−1,i≥l(v) dv

=EDn−1

[
G(l − k + 1, (u−Dn−1)µ)

]
pn−1,i≥l ,

(60)

where fn−1,i≥l(v) is the pdf of the conditional arrival time of customer n− 1, given she finds equal

or more than l customers in system upon her arrival. The first equality in Equation (60) is derived

by applying Bayes’ theorem. In particular

fn−1,i≥l(t) =
pn−1,i≥l|Dn−1=t × fn−1(t)

pn−1,i≥l
.

Similarly, we can write

∫ dn−1+τun−1

dn−1−τ ln−1

fn−1(v)G(l − k, (u− v)µ)pn−1,i≥l|Dn−1=v dv

≤EDn−1

[
G(l − k, (u−Dn−1)µ)

]
pn−1,i≥l .

(61)

Substituting Equation (59) with Equations (60) and (61) gives

n−1∑
l=k

pn,i≥l

≤
∫ dn+τun

dn−τ ln
fn(u)

[
αn−1

n−2∑
l=k−1

EDn−1

[
G(l − k + 1, (u−Dn−1)µ)

]
pn−1,i≥l

+ (1− αn−1)

n−2∑
l=k

EDn−1

[
G(l − k, (u−Dn−1)µ)

]
pn−1,i≥l

]
du.

(62)

Next, we compute
∑n−1

l=k p̃n,i≥l with a characterization of p̃n,i that is equivalent to what we used

in our approximation. In the approximation method, we approximate hn−1,j in Equation (9) by
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hn−1, which leads to

p̃n,i = αn−1

n−2∑
j=i−1

p̃n−1,j

∫ dn−dn−1+τun+τ ln−1

dn−dn−1−τ ln−τun−1

g(j + 1− i, xµ)hn−1(x) dx

+ (1− αn−1)
n−2∑
j=i

p̃n−1,j

∫ dn−dn−1+τun+τ ln−1

dn−dn−1−τ ln−τun−1

g(j − i, xµ)hn−1(x) dx, (63)

with

hn−1(x) =

∫ min (dn+τun ,dn−1+τun−1+x)

max (dn−τ ln,dn−1−τ ln−1+x)
fn(u)fn−1(u− x) du (64)

for x ∈ [dn − dn−1 + τun + τ ln−1, dn − dn−1 − τ ln − τun−1].

We can substitute hn−1(x) and reformulate p̃n,i by changing the integration variables and ranges,

which gives

p̃n,i =
n−2∑
j=i−1

p̃n−1,j

∫ dn+τun

dn−τ ln
fn(u)

∫ dn−1+τun−1

dn−1−τ ln−1

fn−1(v)
[
αn−1g(j + 1− i, (u− v)µ)

+ (1− αn−1)g(j − i, (u− v)µ)
]
dv du .

(65)

Then, we can compute
∑n−1

l=k p̃n,i≥l by using Equation (65). This implies

n−1∑
l=k

p̃n,i≥l

=
n−1∑
l=k

n−1∑
i=l

n−2∑
j=i−1

p̃n−1,j

∫ dn+τun

dn−τ ln

∫ dn−1+τun−1

dn−1−τ ln−1

[
αn−1g(j + 1− i, (u− v)µ)

+ (1− αn−1)g(j − i, (u− v)µ)
]
fn−1(v)fn(u) dv du

=

∫ dn+τun

dn−τ ln
fn(u)

∫ dn−1+τun−1

dn−1−τ ln−1

fn−1(v)
[
αn−1

n−2∑
l=k−1

G(l − k + 1, (u− v)µ)p̃n−1,i≥l dv

+ (1− αn−1)

n−2∑
l=k

G(l − k, (u− v)µ)p̃n−1,i≥l

]
dv du

=

∫ dn+τun

dn−τ ln
fn(u)

[
αn−1

n−2∑
l=k−1

EDn−1

[
G(l − k + 1, (u−Dn−1)µ)

]
p̃n−1,i≥l

+ (1− αn−1)
n−2∑
l=k

EDn−1

[
G(l − k, (u−Dn−1)µ)

]
p̃n−1,i≥l

]
du.

(66)

53



Finally, we are ready to show that Equation (57) holds. By assumption, it follows from Equation

(55) that

(p̃n−1,i≥k, p̃n−1,i≥k+1, · · · , p̃n−1,i≥n−2) ≺w (pn−1,i≥k, pn−1,i≥k+1, · · · , pn−1,i≥n−2),

for all k = 1, · · · , n − 2. For fixed u ∈ [dn − τ ln, dn + τun ], it is obvious that
(
EDn−1

[
G(l, (u −

Dn−1)µ
])n−2

l=1
and

(
EDn−1

[
G(l − 1, (u −Dn−1)µ

])n−2

l=1
are positive and increasing in l. Therefore,

according to Proposition 5, we have

n−2∑
l=k

EDn−1

[
G(l − k + 1, (u−Dn−1)µ)

]
pn−1,i≥l ≤

n−2∑
l=k

EDn−1

[
G(l − k + 1, (u−Dn−1)µ)

]
p̃n−1,i≥l,

which leads to

n−2∑
l=k−1

EDn−1

[
G(l − k + 1, (u−Dn−1)µ)

]
pn−1,i≥l ≤

n−2∑
l=k−1

EDn−1

[
G(l − k + 1, (u−Dn−1)µ)

]
p̃n−1,i≥l,

(67)

since pn−1,i≥0 = p̃n−1,i≥0 = 1. Also, according to Proposition 5, we have

n−2∑
l=k

EDn−1

[
G(l − k, (u−Dn−1)µ)

]
pn−1,i≥l ≤

n−2∑
l=k

EDn−1

[
G(l − k, (u−Dn−1)µ)

]
p̃n−1,i≥l. (68)

Since Equations (67) and (68) hold for all u ∈ [dn − τ ln, dn + τun ], together with Equation (62) and

(66), we deduce that
n−1∑
l=k

pn,i≥l ≤
n−1∑
l=k

p̃n,i≥l for 1 ≤ k ≤ n− 1,

which completes the proof of the proposition.
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Appendix D Experiments related to Section 6

Figure 5: Exact v.s. Approximation (τ ln = τun = τ = 10, αn = α = 1, xn = x = 20, µ = 0.1)6

6Numerical results are generated using Wolfram Mathematica 12.1.1 on Mac OS 10.15.4 with an 18 cores Intel
Xeon W processor and 64 GB Ram.
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Table 5: Comparison between exact and approximate methods: Experiments 1, µ = 0.05

Scenarios
Parameters Exact, E[W ] Approx., E[W̃ ] ∆W =

E[W̃ ]− E[W ]

E[W ]
× 100%

τ l τu α dn − dn−1
Nber of customers Nber of customers Nber of customers

10 20 30 40 10 20 30 40 10 20 30 40

Varying τ

2.5 2.5 1 20 21.4 35.0 45.6 54.5 21.5 35.2 45.8 54.7 0.2 % 0.3 % 0.3 % 0.4 %
5 5 1 20 21.8 35.4 45.9 54.9 22.0 35.8 46.6 55.7 1.0 % 1.2 % 1.4 % 1.5 %

7.5 7.5 1 20 22.2 35.8 46.4 55.3 22.7 36.8 47.8 57.1 2.1 % 2.8 % 3.1 % 3.3 %
10 10 1 20 22.8 36.4 47.0 55.9 23.6 38.2 49.5 59.1 3.7 % 4.8 % 5.4 % 5.7 %

Varying τ l − τu

1 9 1 20 21.4 35.2 45.8 54.7 21.6 35.6 46.4 55.5 1.0 % 1.3 % 1.4 % 1.5 %
2 8 1 20 21.5 35.2 45.8 54.7 21.7 35.6 46.4 55.5 1.0 % 1.3 % 1.4 % 1.5 %
3 7 1 20 21.5 35.2 45.8 54.8 21.7 35.7 46.4 55.6 1.0 % 1.3 % 1.4 % 1.5 %
4 6 1 20 21.6 35.3 45.9 54.8 21.8 35.7 46.5 55.6 1.0 % 1.2 % 1.4 % 1.5 %
5 5 1 20 21.8 35.4 45.9 54.9 22.0 35.8 46.6 55.7 1.0 % 1.2 % 1.4 % 1.5 %
6 4 1 20 21.9 35.5 46.0 54.9 22.1 35.9 46.7 55.7 1.0 % 1.3 % 1.4 % 1.5 %
7 3 1 20 22.1 35.6 46.1 55.0 22.3 36.1 46.8 55.8 1.0 % 1.3 % 1.4 % 1.5 %
8 2 1 20 22.3 35.8 46.3 55.1 22.5 36.2 46.9 56.0 1.0 % 1.2 % 1.4 % 1.5 %
9 1 1 20 22.6 36.0 46.4 55.3 22.8 36.4 47.0 56.1 1.0 % 1.2 % 1.4 % 1.5 %

Varying α

5 5 0.2 20 2.4 2.7 2.8 2.8 2.5 2.7 2.8 2.8 1.0 % 1.3 % 1.4 % 1.4 %
5 5 0.4 20 5.5 6.5 6.9 7.0 5.6 6.6 7.0 7.2 1.2 % 1.5 % 1.7 % 1.8 %
5 5 0.6 20 9.6 12.3 13.6 14.3 9.7 12.5 13.8 14.6 1.2 % 1.6 % 1.9 % 2.0 %
5 5 0.8 20 14.9 21.5 25.4 28.1 15.1 21.8 25.9 28.7 1.1 % 1.5 % 1.8 % 2.0 %
5 5 1 20 21.8 35.4 45.9 54.9 22.0 35.8 46.6 55.7 1.0 % 1.2 % 1.4 % 1.5 %

Varying δ

5 5 1 20 21.8 35.4 45.9 54.9 22.0 35.8 46.6 55.7 1.0 % 1.2 % 1.4 % 1.5 %
5 5 1 22.5 17.5 26.3 32.2 36.6 17.6 26.7 32.7 37.3 1.0 % 1.4 % 1.7 % 1.8 %
5 5 1 25 14.0 19.6 22.8 24.9 14.2 19.9 23.2 25.4 1.1 % 1.5 % 1.8 % 1.9 %
5 5 1 27.5 11.3 14.8 16.6 17.6 11.4 15.1 16.9 17.9 1.1 % 1.5 % 1.7 % 1.9 %
5 5 1 30 9.2 11.4 12.4 12.9 9.3 11.6 12.6 13.1 1.0 % 1.4 % 1.6 % 1.7 %
5 5 1 35 6.1 7.1 7.5 7.7 6.2 7.2 7.6 7.8 0.9 % 1.2 % 1.3 % 1.4 %
5 5 1 40 4.3 4.7 4.9 5.0 4.3 4.8 4.9 5.0 0.8 % 1.0 % 1.0 % 1.0 %
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Table 6: Comparison between exact and approximate methods: Experiments 2, µ = 0.05

Scenarios
Parameters Exact, E[W ] Approx., E[W̃ ] ∆W =

E[W̃ ]− E[W ]

E[W ]
× 100%

τ l τu α dn − dn−1
Nber of customers Nber of customers Nber of customers

10 20 30 40 10 20 30 40 10 20 30 40

Varying τ

2.5 2.5 1 20 21.4 35.0 45.6 54.5 21.5 35.2 45.8 54.7 0.2 % 0.3 % 0.3 % 0.4 %
5 5 1 20 21.8 35.4 45.9 54.9 22.0 35.8 46.6 55.7 1.0 % 1.2 % 1.4 % 1.5 %

7.5 7.5 1 20 22.2 35.8 46.4 55.3 22.7 36.8 47.8 57.1 2.1 % 2.8 % 3.1 % 3.3 %
10 10 1 20 22.8 36.4 47.0 55.9 23.6 38.2 49.5 59.1 3.7 % 4.8 % 5.4 % 5.7 %

Varying τ l − τu

2 18 1 20 22.2 36.0 46.7 55.7 23.0 37.7 49.2 58.8 3.7 % 4.8 % 5.4 % 5.7 %
4 16 1 20 22.2 36.1 46.7 55.7 23.0 37.8 49.2 58.9 3.7 % 4.8 % 5.4 % 5.7 %
6 14 1 20 22.3 36.1 46.8 55.8 23.2 37.9 49.3 58.9 3.7 % 4.8 % 5.4 % 5.7 %
8 12 1 20 22.5 36.3 46.9 55.8 23.4 38.0 49.4 59.0 3.7 % 4.8 % 5.4 % 5.7 %
10 10 1 20 22.8 36.4 47.0 55.9 23.6 38.2 49.5 59.1 3.7 % 4.8 % 5.4 % 5.7 %
12 8 1 20 23.1 36.6 47.2 56.1 23.9 38.4 49.7 59.3 3.7 % 4.8 % 5.4 % 5.7 %
14 6 1 20 23.5 36.9 47.4 56.3 24.3 38.7 49.9 59.5 3.6 % 4.8 % 5.4 % 5.7 %
16 4 1 20 24.0 37.3 47.7 56.5 24.9 39.1 50.2 59.8 3.6 % 4.8 % 5.4 % 5.7 %
18 2 1 20 24.6 37.7 48.0 56.8 25.5 39.5 50.6 60.1 3.6 % 4.8 % 5.4 % 5.7 %

Varying α

10 10 0.2 20 2.7 2.9 3.0 3.0 2.8 3.0 3.1 3.2 4.2 % 5.4 % 5.8 % 6.0 %
10 10 0.4 20 6.0 6.9 7.2 7.4 6.2 7.3 7.7 7.9 4.6 % 6.2 % 6.8 % 7.1 %
10 10 0.6 20 10.2 12.9 14.2 14.9 10.7 13.8 15.2 16.1 4.5 % 6.4 % 7.4 % 8.0 %
10 10 0.8 20 15.7 22.3 26.2 29.0 16.4 23.6 28.1 31.2 4.2 % 6.0 % 7.0 % 7.7 %
10 10 1 20 22.8 36.4 47.0 55.9 23.6 38.2 49.5 59.1 3.7 % 4.8 % 5.4 % 5.7 %

Varying δ

10 10 1 20 22.8 36.4 47.0 55.9 23.6 38.2 49.5 59.1 3.7 % 4.8 % 5.4 % 5.7 %
10 10 1 22.5 18.3 27.2 33.1 37.5 19.1 28.7 35.2 40.2 4.0 % 5.6 % 6.4 % 7.1 %
10 10 1 25 14.8 20.4 23.6 25.7 15.4 21.6 25.2 27.6 4.2 % 5.9 % 6.9 % 7.6 %
10 10 1 27.5 12.0 15.5 17.2 18.2 12.5 16.4 18.4 19.6 4.2 % 6.0 % 6.9 % 7.5 %
10 10 1 30 9.7 12.0 12.9 13.4 10.1 12.7 13.8 14.4 4.1 % 5.7 % 6.5 % 6.9 %
10 10 1 35 6.6 7.5 7.9 8.0 6.9 7.9 8.3 8.5 3.6 % 4.8 % 5.2 % 5.5 %
10 10 1 40 4.6 5.0 5.2 5.2 4.8 5.2 5.4 5.5 3.1 % 3.9 % 4.1 % 4.2 %
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Table 7: Comparison between exact and approximate methods: Experiments 3, µ = 0.05

Scenarios
Parameters Exact, E[W ] Approx., E[W̃ ] ∆W =

E[W̃ ]− E[W ]

E[W ]
× 100%

τ l τu α dn − dn−1
Nber of customers Nber of customers Nber of customers

10 20 30 40 10 20 30 40 10 20 30 40

Varying τ

2.5 2.5 1 30 9.0 11.3 12.2 12.7 9.0 11.3 12.3 12.8 0.3 % 0.4 % 0.4 % 0.4 %
5 5 1 30 9.2 11.4 12.4 12.9 9.3 11.6 12.6 13.1 1.0 % 1.4 % 1.6 % 1.7 %

7.5 7.5 1 30 9.4 11.7 12.6 13.1 9.6 12.0 13.1 13.6 2.3 % 3.2 % 3.6 % 3.9 %
10 10 1 30 9.7 12.0 12.9 13.4 10.1 12.7 13.8 14.4 4.1 % 5.7 % 6.5 % 6.9 %

Varying τ l − τu

1 9 1 30 9.0 11.3 12.3 12.8 9.1 11.5 12.5 13.1 1.1 % 1.4 % 1.6 % 1.7 %
2 8 1 30 9.0 11.3 12.3 12.9 9.1 11.5 12.5 13.1 1.1 % 1.4 % 1.6 % 1.7 %
3 7 1 30 9.0 11.4 12.3 12.9 9.1 11.5 12.5 13.1 1.1 % 1.4 % 1.6 % 1.7 %
4 6 1 30 9.1 11.4 12.4 12.9 9.2 11.5 12.6 13.1 1.1 % 1.4 % 1.6 % 1.7 %
5 5 1 30 9.2 11.4 12.4 12.9 9.3 11.6 12.6 13.1 1.0 % 1.4 % 1.6 % 1.7 %
6 4 1 30 9.2 11.5 12.4 12.9 9.3 11.6 12.6 13.1 1.0 % 1.4 % 1.6 % 1.7 %
7 3 1 30 9.4 11.5 12.5 12.9 9.5 11.7 12.7 13.2 1.0 % 1.4 % 1.6 % 1.7 %
8 2 1 30 9.5 11.6 12.5 13.0 9.6 11.8 12.7 13.2 1.0 % 1.4 % 1.6 % 1.7 %
9 1 1 30 9.6 11.7 12.6 13.0 9.7 11.8 12.8 13.2 1.0 % 1.4 % 1.6 % 1.7 %

Varying α

5 5 0.2 30 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 0.6 % 0.7 % 0.7 % 0.7 %
5 5 0.4 30 2.6 2.8 2.9 2.9 2.7 2.9 2.9 3.0 0.8 % 0.9 % 0.9 % 0.9 %
5 5 0.6 30 4.3 4.8 5.0 5.1 4.4 4.9 5.1 5.2 0.9 % 1.1 % 1.1 % 1.2 %
5 5 0.8 30 6.5 7.6 8.0 8.2 6.5 7.7 8.1 8.3 1.0 % 1.3 % 1.4 % 1.4 %
5 5 1 30 9.2 11.4 12.4 12.9 9.3 11.6 12.6 13.1 1.0 % 1.4 % 1.6 % 1.7 %

Varying δ

10 10 1 20 22.8 36.4 47.0 55.9 23.6 38.2 49.5 59.1 3.7 % 4.8 % 5.4 % 5.7 %
10 10 1 22.5 18.3 27.2 33.1 37.5 19.1 28.7 35.2 40.2 4.0 % 5.6 % 6.4 % 7.1 %
10 10 1 25 14.8 20.4 23.6 25.7 15.4 21.6 25.2 27.6 4.2 % 5.9 % 6.9 % 7.6 %
10 10 1 27.5 12.0 15.5 17.2 18.2 12.5 16.4 18.4 19.6 4.2 % 6.0 % 6.9 % 7.5 %
10 10 1 30 9.7 12.0 12.9 13.4 10.1 12.7 13.8 14.4 4.1 % 5.7 % 6.5 % 6.9 %
10 10 1 35 6.6 7.5 7.9 8.0 6.9 7.9 8.3 8.5 3.6 % 4.8 % 5.2 % 5.5 %
10 10 1 40 4.6 5.0 5.2 5.2 4.8 5.2 5.4 5.5 3.1 % 3.9 % 4.1 % 4.2 %
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Table 8: Comparison between exact and approximate methods: Experiments 4, µ = 0.05

Scenarios
Parameters Exact, E[W ] Approx., E[W̃ ] ∆W =

E[W̃ ]− E[W ]

E[W ]
× 100%

τ l τu α dn − dn−1
Nber of customers Nber of customers Nber of customers

10 20 30 40 10 20 30 40 10 20 30 40

Varying τ

2.5 2.5 1 30 9.0 11.3 12.2 12.7 9.0 11.3 12.3 12.8 0.3 % 0.4 % 0.4 % 0.4 %
5 5 1 30 9.2 11.4 12.4 12.9 9.3 11.6 12.6 13.1 1.0 % 1.4 % 1.6 % 1.7 %

7.5 7.5 1 30 9.4 11.7 12.6 13.1 9.6 12.0 13.1 13.6 2.3 % 3.2 % 3.6 % 3.9 %
10 10 1 30 9.7 12.0 12.9 13.4 10.1 12.7 13.8 14.4 4.1 % 5.7 % 6.5 % 6.9 %

Varying τ l − τu

2 18 1 30 9.4 11.8 12.8 13.3 9.8 12.5 13.6 14.3 4.2 % 5.8 % 6.5 % 6.9 %
4 16 1 30 9.4 11.8 12.8 13.4 9.8 12.5 13.7 14.3 4.2 % 5.7 % 6.5 % 6.9 %
6 14 1 30 9.5 11.9 12.8 13.4 9.9 12.5 13.7 14.3 4.1 % 5.7 % 6.5 % 6.9 %
8 12 1 30 9.6 11.9 12.9 13.4 10.0 12.6 13.7 14.3 4.1 % 5.7 % 6.5 % 6.9 %
10 10 1 30 9.7 12.0 12.9 13.4 10.1 12.7 13.8 14.4 4.1 % 5.7 % 6.5 % 6.9 %
12 8 1 30 9.9 12.1 13.0 13.5 10.3 12.8 13.8 14.4 4.0 % 5.7 % 6.5 % 6.9 %
14 6 1 30 10.2 12.2 13.1 13.6 10.6 12.9 13.9 14.5 4.0 % 5.7 % 6.4 % 6.9 %
16 4 1 30 10.4 12.3 13.2 13.6 10.8 13.0 14.0 14.6 4.0 % 5.6 % 6.4 % 6.8 %
18 2 1 30 10.8 12.5 13.3 13.7 11.2 13.2 14.1 14.6 3.9 % 5.6 % 6.4 % 6.8 %

Varying α

10 10 0.2 30 1.5 1.4 1.4 1.4 1.5 1.5 1.5 1.5 2.2 % 2.7 % 2.9 % 3.0 %
10 10 0.4 30 2.9 3.1 3.1 3.1 3.0 3.2 3.2 3.2 2.9 % 3.5 % 3.7 % 3.8 %
10 10 0.6 30 4.7 5.2 5.3 5.4 4.9 5.4 5.6 5.6 3.4 % 4.3 % 4.6 % 4.7 %
10 10 0.8 30 6.9 8.0 8.4 8.6 7.2 8.4 8.8 9.1 3.8 % 5.1 % 5.5 % 5.8 %
10 10 1 30 9.7 12.0 12.9 13.4 10.1 12.7 13.8 14.4 4.1 % 5.7 % 6.5 % 6.9 %

Varying δ

10 10 1 20 22.8 36.4 47.0 55.9 23.6 38.2 49.5 59.1 3.7 % 4.8 % 5.4 % 5.7 %
10 10 1 22.5 18.3 27.2 33.1 37.5 19.1 28.7 35.2 40.2 4.0 % 5.6 % 6.4 % 7.1 %
10 10 1 25 14.8 20.4 23.6 25.7 15.4 21.6 25.2 27.6 4.2 % 5.9 % 6.9 % 7.6 %
10 10 1 27.5 12.0 15.5 17.2 18.2 12.5 16.4 18.4 19.6 4.2 % 6.0 % 6.9 % 7.5 %
10 10 1 30 9.7 12.0 12.9 13.4 10.1 12.7 13.8 14.4 4.1 % 5.7 % 6.5 % 6.9 %
10 10 1 35 6.6 7.5 7.9 8.0 6.9 7.9 8.3 8.5 3.6 % 4.8 % 5.2 % 5.5 %
10 10 1 40 4.6 5.0 5.2 5.2 4.8 5.2 5.4 5.5 3.1 % 3.9 % 4.1 % 4.2 %

59


	Introduction
	Related literature
	Problem description and analysis
	Problem description
	Analysis
	Distribution of the number of customers at arrival instants
	Waiting time distributions

	An example: A symmetric system with uniformly-distributed non-punctuality
	Systems with -Cox-distributed service times

	Numerical results: the impact of non-punctuality
	Application: Appointment scheduling subject to a service level constraint
	An approximate approach
	Concluding remarks
	Triangular distribution for punctuality
	Details for the analysis of -Cox-distributed service times
	Proof of Propositions
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3

	Experiments related to Section 6

