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Abstract

Unlike calls, the chat channel allows a contact center agent to simultaneously work with many cus-

tomers. The benefit of this flexibility can be however challenged by a new abandonment feature during

service. In this context, new flow routing questions arise. How many chats should an agent serve? Which

agent should be selected? Or may a chat be served by more than one agent? We aim to answer these

questions so as to find the best trade-off between time spent in service, queueing delay and abandonment.

For this purpose, we determine conditions under which the traditional Least Busy First or Most Busy

First policies are optimal for agent selection. Using a dynamic programming analysis, we prove that a

state-dependent threshold reservation policy is optimal when a chat can be handed to other agents with-

out loss of efficiency. This analysis reveals that reservation is useful as it allows to maintain of sufficient

agent productivity and abandonment from the queue which in turn reduce the system’s congestion. In

addition, we show the closeness between the optimal policy and the easier-to-implement fixed capacity

policy if this fixed capacity is optimized. When a chat cannot be handed to other agents, we develop a

dispatching policy improvement algorithm based on the explicit computation of the relative value func-

tion for an initial policy with fixed probabilities. The dispatching policy significantly outperforms non

state-dependent ones, as it partly compensates the agents’ inability to share a chat service.

Keywords: OR in service industries; contact centers; queueing systems; Markov decision process; chat

messages; routing; multitasking; abandonment.



1 Introduction

Context and motivation. New advances in telecommunication technology are revolutionizing the way

call centers interact with customers. Customer preferences are also evolving rapidly toward the use of new

technology. In this context, there has been, in recent years, a surge of interest in new software products that

make it possible for contact centers to offer assistance to online users via the chat channel. Chat systems

allow customers to access an instant messaging system built into the call center website to interact with

agents online.

From an operational point of view, chats offer more interactivity compared to emails and this leads to

more efficient demand resolution and less waste of time on already solved problems. They also allow for

less working time per customer than call conversations because of the multitasking possibility. Chats thus

somehow combine the benefits of call and email channels. Other advantages of chat systems are the features

such as screen sharing and the ability to share files and data, which are particularly useful to computer

companies, software companies, and e-retailers (Cui and Tezcan, 2016). Despite its prevalence in practice

(40% of contact centers use chats as reported in ICMI (2013)), very few related papers have been published.

Due to their unique features, we believe that chat service systems are and will be an important way to

interact with customers. Organizations that run contact centers will take better care of this alternative

communication channel to improve efficiency and reduce costs relative to the cost of servicing phone calls.

In this paper, we consider a chat contact center and address the problem of routing chats to agents. The

optimization problem consists of a trade-off between waiting times and abandonments. Interactions between

agents and customers in a chat contact center can be modeled as a queueing system. The characteristics

of this queueing model are that agents can handle more than one chat at once, customers can abandon the

system not only during the wait but also during the service due to what is perceived as a long wait during

the discussion, and a customer can be served by more than one agent successively because the conversation

is written and agents are anonymous. This possibility is nevertheless not implemented in all chat contact

centers.

The idea of handing a chat to another agent during its initial service is appealing. Inefficient situations

where an agent is too busy compared to another one can thus be avoided. Yet in practice, the evident

operational value of this flexibility is sometimes counterbalanced by the risk of agents’ disempowerment or

loss of efficiency. By sharing the amount of work, agents may not feel fully responsible for the quality of

service provided. They may believe that the system will always be able to compensate for the difficulties

that they may encounter. Moreover, there is also the possibility of a new agent losing time when reading and

understanding the conversation history. That is why many contact centers prefer not to let chats be served

by more than one agent. In this paper, we consider the two cases where chats can or cannot be handed to

other agents during their service.
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In contrast to the existing studies, our modeling allows for two important practical features. First,

existing studies usually assume, for simplicity’s sake, that, for a given agent, the service rate per chat

decreases with the number of simultaneously handled chats. However, this is not always the case in practice.

A statistical study by Tan and Netessine (2014) shows that the agents’ speed-up behavior is observed and

may be explained by a rushing effect. Here, we allow the service rate per chat to be an arbitrary function

of the number of simultaneously handled chats. As a consequence, to obtain better efficiency, we also relax

the assumption of the traditional lightest-load-first rule which says that the least busy agent should be given

priority for the service of a new customer. Second, we do not restrict the routing policy of chats to agents

to the traditional fixed threshold policy, where chats are automatically assigned to a given agent until a

predefined maximum limit is reached. We instead allow for idling policies. A chat is not automatically

routed to an agent because this may deteriorate the system’s performance. The decision then depends on

the system’s state. The use of a state-dependent policy is illustrated in Figure 1 for a 24/7 Brazilian chat

contact center. This contact center belongs to a service provider that offers customers technical support. The

staffing is modified every two hours in order to match demand variation. The points in the figure correspond

to a change in the agent’s state due to a chat service completion or a chat entering service. The figure shows

the number of simultaneously handled chats for a given agent as a function of time. We observe from the

figure that the number of simultaneously handled chats increases with the system workload (the threshold

is the highest during peak hours).
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Figure 1: Data from a Brazilian chat contact center

Contributions. In this paper, we focus on a chat routing problem where the contact center manager seeks

a trade-off between various conflicting objectives, namely, the chat waiting time in the queue, the service

time duration per chat, and the proportion of lost customers due to abandonment. We consider two cases;

the shared work case where chats can be handed to other agents during service and the non-shared work

case where this flexibility is forbidden.

In the shared work case, we provide the required conditions under which the traditional Least Busy First

(LBF) or the Most Busy First (MBF) policies are optimal for agent selection. In addition, we provide a
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method to optimally distribute chats among agents. Next, we consider the chat initiation problem. The idea

is to determine whether or not a chat should be sent to service. Using a Markov decision process approach,

we prove in a context without abandonment that a state-dependent threshold reservation policy based on

the number of chats in the queue and in service is optimal. With abandonment, using a smoothed rate

truncation approach, we derive the required conditions for the optimality of this policy. Our analysis reveals

that partial idling is beneficial for the system’s performance, as it allows agents to have higher productivity

and customers to abandon more from the queue in order to reduce the system congestion. In practice, the

agents’ capacity is used at its maximal value. We show that this may lead to poor performance. Yet, by

optimizing the maximum number of chats per agent, the contact center can implement a simple and close-

to-optimal policy. As the contact center size increases, the gap between the optimal and the fixed threshold

policy reduces.

In the non-shared work case, we develop a one-step policy improvement algorithm to obtain an efficient

dispatching policy. This method is based on the explicit computation of the relative value function for an

initial policy with fixed probabilities for admission control. An important value of this method is that it

avoids the curse of dimensionality problem. The method developed in the non-shared work case is generic

and goes beyond the analysis of the chat queue in this paper. It provides near-optimal routing policies for

the classical problem of routing jobs to parallel queues with impatient customers. In the chat context, we

show that our dispatching policy significantly outperforms non state-dependent policies (i.e., policies with

fixed probabilities). Compared to the latter, it reduces the abandonment from the queue without necessarily

increasing the abandonment from service. The value of our policy is that it partly compensates the negative

constraint of not sharing work between agents. The policy almost achieves the same performance as in the

shared work case in small or large contact centers.

The remainder of this paper is structured as follows. Section 2 reviews the related literature. Section

3 describes the setting and the optimization question for the chat contact center. Section 4 focuses on the

agent selection problem in the shared work case. Section 5 is devoted to the optimization of the service

admission policy in the shared work case. Section 6 develops an algorithm to derive an efficient routing

policy in the non-shared work case. Section 7 concludes the paper. The mathematical proofs and additional

results are given in an online supplement.

2 Literature review

The literature on the operations management in call centers is rich (Akşin and Harker, 2003; Avramidis

et al., 2010; Jouini et al., 2010; Aktekin, 2014; Ibrahim et al., 2016; Barrow and Kourentzes, 2018). For some

background on this literature, we refer the reader to the two surveys by Gans et al. (2003) and Akşin et al.
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(2007). Although the use of chats is growing, there are very few related papers in the literature. Tezcan

and Zhang (2014) consider the objective of minimizing the staffing while providing a certain service level

measured in terms of the proportion of customers who abandon the system in the long run. They propose

effective routing policies based on a static planning linear programming for the two cases of observable or

unobservable arrival rates. The modeling is however restricted to the case of decreasing service rates per

chat and a fixed threshold for the maximum number of chats per agent. Luo and Zhang (2013) in turn fix

the routing policy and focus on staffing optimization by investigating a fluid limit approximation assuming

infinitely patient customer chats. Other solutions to the staffing problem are provided by Cui and Tezcan

(2016) using diffusion limits.

Another stream of literature related to this paper is the analysis of processor sharing queues. Processor

sharing at a server is a setting where all arriving customers enter service immediately (there is no queue),

but the service rate they receive is proportional to the number of customers in service. Web servers are a

good example where the processor sharing discipline is applied. This discipline is usually opposed to the

first-come-first-served discipline where tasks are handled one by one. Chow et al. (1979) and Altman et al.

(2011) consider the problem of routing jobs to different processor sharing servers. In the case of homogeneous

servers, it is shown that an equal load balancing policy is optimal. This may explain the assumption of the

Least Busy First policy used in most articles on the chat channel although this policy is not optimal. Some

articles on processor sharing also focus on performance evaluation. The framework is to use a measure-valued

process. For instance, Gromoll et al. (2008) use a measure-valued descriptor for the analysis of processor

sharing queues that are not overloaded. Zhang et al. (2009) propose a measure-valued fluid model and

show that there is a unique associated fluid model solution. Further references on processor sharing include

Avi-Itzhak and Halfin (1988); Jean-Marie and Robert (1994); Puha et al. (2006); Haviv and Van der Wal

(2008); Ravner et al. (2016); Vanlerberghe et al. (2018). The chat channel studied in this article differs from

a processor sharing queue in the sense that all customers are not immediately admitted in service. They may

wait in a queue before entering service. Moreover, the service rate received is not necessarily proportional

to the number of chats in service in our modeling.

Our study is also related to the historical problem of routing to parallel queues. Winston (1977) is the

first to show that the intuitive “Join the shortest queue” policy is optimal to minimize the expected sojourn

time with identical exponential servers. Using a dynamic programming approach, Hordijk and Koole (1992)

extend the analysis to different service rates and show that the “Shorter Queue Faster Server Policy” is

optimal. When the exponential assumption for services is relaxed, the above intuitive policies are no longer

necessarily optimal. Counterexamples can be found in Whitt (1986) and Koole et al. (1999). Several related

articles can be found with focus on routing optimization, performance evaluation, for individual or social

optimization, with observable queues or not (Guo et al., 2004; Hordijk and van der Laan, 2004; Anselmi
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and Gaujal, 2011; Anselmi and Casale, 2013; Legros, 2018). The method developed in this article for the

non-shared work case contributes to the methodology for the routing to parallel queues. Unlike the existing

studies, here we allow for state-dependent departure rates.

A last stream of literature related to this paper is the analysis of reservation strategy in call centers. In

most studies, reservation strategies have been considered when two different job types, inbound and outbound

calls, have to be handled by a unique group of agents. This consists in analyzing call blended policies. Some

papers focus on performance evaluation, and others address the analysis of blending policies or staffing

decisions. Deslauriers et al. (2007) develop various continuous Markov chain models for a call center with

inbound and outbound calls. The authors consider a threshold policy and characterize the rate of outbounds

and the waiting time distribution of inbounds. Further references include Bernett et al. (2002); Pichitlamken

et al. (2003); Kim et al. (2012); Legros et al. (2018). Other call center papers address the analysis of blending

policies. Gans and Zhou (2003) and Bhulai and Koole (2003b) prove that a threshold policy on the number of

idle agents is optimal to maximize the outbound throughput under a service level constraint on the inbound

waiting time. Similar results are also found in Legros et al. (2015), for a non-stationary model where inbound

calls arrive according to a non-homogeneous Poisson process. Pang and Perry (2014) consider a large call

center blending model and propose a logarithmic safety staffing rule, combined with a threshold control

policy to ensure that agents’ utilization is close to one with always idle agents present. For a call center

model with a callback option, Legros et al. (2016) examine the effect of the callback offer on the system’s

performance and show that a state-dependent reservation policy is optimal. Considering a single job type,

Legros (2017) shows that reservation can also be efficiently used to reduce balking and abandonment. The

particularity of our model compared to the models with the call channel in the literature is that we allow

the simultaneous handling of chats per agent. Moreover, unlike the call channel in the above studies, an

inbound chat is not necessarily served when an agent is available. Depending on the system congestion, one

has to decide whether to serve a chat immediately or to maintain it in the queue. This enlarges the range of

possibilities for improving the system’s performance but also leads to a more complex optimal policy than a

fixed threshold policy.

3 Setting

We first describe the queueing chat model and then formulate the routing optimization problem of the system

manager.

Model description. Chats arrive at an infinite capacity first-come-first-served queue according to a Pois-

son process with rate λ. The system capacity consists of a homogeneous pool of s agents. Given the chat

channel nature (written conversation with less required responsiveness than for calls), an agent has the abil-
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ity to serve more than one customer simultaneously. An agent is said to be at level i if she is serving i

customers (i ≥ 0) at once. We assume that the service time of a customer receiving service from an agent

at level i is exponentially distributed with rate µi, for i ≥ 1.

The traditional ordering assumption is µi+1 ≤ µi, for i ≥ 1. It means that the more tasks an agent is

working on, the slower she will be on each task. In this paper, we do not restrict the modeling to a specific

ordering of the service rates. For instance, the traditional ordering µi+1 ≤ µi, for i ≥ 1, is not appropriate for

the agents’ behavior when rushing. It is observed in practice that a large number of simultaneous tasks may

push the agents to shorten the conversation duration. This often corresponds to real-time instructions given

by the management as is the case for the voice channel. Service rates may therefore increase in the number

of simultaneous chats. The increasing speed per served chat due to a rushing effect is usually followed by a

decreasing speed per served chat when the number of chats in service is high. This behavior is due to loss

of concentration or excessive workload (Tezcan and Zhang, 2014).

Because of the text messaging interaction, a customer may abandon not only while waiting in the queue,

but also while being in service if she estimates that the quality of the interaction is poor. We assume that

the abandonment time of chats from the queue is exponentially distributed with rate γq, and that of chats

during the service is exponentially distributed with rate γs. Since the conversation history is available, a

new agent may take over the remaining service without informing the customer. This flexibility can be used

as a tool to improve performance. In summary, the main characteristics of the chat channel studied in this

article compared to the call channel are: (i) abandonment during service, (ii) simultaneity in chat handling,

and (iii) a chat can be handed to other agents during service.

The optimization objective. We use E(Wq) and E(S) to denote the stationary expected waiting time in

the queue, and the customers’ expected service time, respectively. More specifically, E(Wq) is the expected

waiting time of both served and lost customers. If a chat does not wait in the queue, the value 0 is counted

for its waiting time. The expected service time, E(S), corresponds to the expected time spent in service,

irrespective of whether the service is completed or not or if a customer enters service or not. If a customer

does not enter service, the value 0 is associated to its service time. We use Pa,q to denote the stationary

proportion of abandonment from the queue, and Pa,s to denote the stationary proportion of abandonment

from service. The overall proportion of abandonment is denoted by Pa; Pa = Pa,q + Pa,s.

In a chat service system, the performance of the queue is in conflict with the performance of the service.

The first conflict is between E(Wq) and E(S). As in a traditional voice call center, the manager worries

about the waiting time in the queue. Thanks to the agents’ ability to simultaneously work on different chats,

the manager may decide to assign many waiting chats into service. Although this may improve the expected

waiting time in the queue, chat handling may take too much time due to an excessive number of chats in

service. Therefore, the chat contact center manager wants to strike a good balance between two conflicting
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objectives, namely, the expected waiting time in the queue and the expected service time.

The system manager is also worried about losing customers due to abandonment. Abandonment may

happen either from the queue or from service. If too many customers are sent to service, service speed may

significantly slow down. This may also lead to a high proportion of abandonment from service. Again, a

good balance has to be found, so as to minimize the overall proportion of abandonment.

The expected waiting time in the queue (respectively, the expected service time) and the proportion of

abandonment from the queue (respectively, the proportion of abandonment from service) increase with the

congestion in the queue (respectively, in service). Hence, by appropriately controling the congestion in the

queue and in service, one may appropriately control the two aforementioned performance measures at the

same time. Yet, due to the difference in the importance perceived by the manager of the two performance

measures (abandonment and wait), we cannot merge these two objectives into a simple congestion control.

For instance, if the manager does not care about abandonment but cares more about waiting time, then it

may be beneficial to let customers abandon in order to reduce the waiting time instead of sending them into

service so as to reduce the congestion of the queue.

In summary, the manager’s goal can be formulated as minimizing the following weighted cost summation,

denoted by M ,

M = c1E(Wq) + c2E(S) + c3Pa, (1)

where the coefficients c1, c2 and c3 are the cost parameters that translate the relative importance between

the three cost components of the objective function M . The objective is to optimize the chat routing policy

in order to minimize M . The routing problem in chat service systems has two connected parts: i) Agent

selection problem: at any point in time we optimize the choice of the best agent to serve a chat, if any;

ii) Chat initiation problem: at any point in time we optimize the chat service initiation, i.e., the choice of

serving a chat or not. This means that we may force a chat to stay in the queue while an agent has the

capacity to serve it. This is useful since a new customer entering service could harm the performance for the

customers already in service.

Determining the optimal routing policy consists in finding the best action at each state of the system.

Yet, simultaneity in chat handling leads to a very high dimensional problem which could not be tackled

because of the curse of dimensionality. This may even be a problem with space state truncation. For

instance, if the queue is truncated and has n waiting spaces (n ≥ 1) and if each agent can serve up to u

chats simultaneously (u ≥ 1), the state space contains exactly n× us states. The routing problem therefore

has an exponential complexity. This problem has already been described in Bellman (1961). Approximation

methods or simplifications are therefore often developed.

In order to avoid this problem of dimensionality, we assume that chats can be handed to other agents
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during their service without loss of efficiency. Under this assumption, agents are seen as a team which can

be optimized at any point of time in order to maximize its efficiency. This team approach leads to a two-

dimensional problem: the number of customers in the queue and the number of customers in service. The

corresponding optimal policy is given in Sections 4 and 5. We call this case the Shared Work Case (SWC).

In practice, there is also the possibility of a new agent losing time when reading and understanding the

conversation history. In addition, removing a task from an agent can be wrongly interpreted by giving a

signal to the agent that the service is not efficiently provided. That is why the possibility that a chat can be

handed to another agent during its service is not always used in practice. We then propose to also study the

case where chats cannot be handed to other agents. We call this case the Non-shared Work Case (NWC). We

assume that each agent has its own queue. Depending on the system’s state, a dispatcher has to decide the

queue to which a chat should be routed. Chats are dispatched upon arrival but we also allow for jockeying,

i.e., moving a chat from one queue to the other at any point of time. By moving one chat from one queue

to the other, the situations where one chat is waiting while an agent could efficiently serve this chat can be

avoided. The benefits of having one common queue are therefore maintained.

Under the NWC, we develop a one-step policy improvement method in Section 6 to obtain near-optimal

solutions for chats’ dispatching. The value of this method is to reduce the complexity of the problem to

a linear one. By using the results of Section 5 in the single server case, a chat dispatching solution in the

NWC can be derived. Figure 2 depicts the methodological approach for the analysis.

�

��������	
�

�����������������������������

����������

���������
�

����������������������������������

����

���������
�

���������������������������������

���������

����������������������

���������������

���������������������������

�������������������

��������� �������

Figure 2: Methodological approach

4 The agent selection problem in the SWC

We address the agent selection problem in the SWC. The objective is to develop a solution to balance the

load among agents when a given quantity of chats is in service. More precisely, we consider a situation with

k chats in service. We denote by xi the number of chats currently handled by agent i, for 0 ≤ xi ≤ k and
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1 ≤ i ≤ s. We want to maximize the average service rate per chat defined as x1µ(x1)+x2µ(x2)+···+xsµ(xs)
s

subject to the constraint x1 +x2 + · · ·+xs = k. By maximizing the average service rate per chat for a given

quantity of chats in service, the system also minimizes the expected time spent in service and maximizes the

flow from service. This in turn minimizes the expected waiting time and the proportion of abandonment

from the queue by allowing customers to enter service quicker than under another policy. Moreover, since the

proportion of abandonment from service increases with the expected time spent in service, by maximizing the

average service rate per chat, one also minimizes the proportion of abandonment from service. In conclusion,

for a given quantity of chats in service, a policy which maximizes the average service rate per chat optimizes

the rate selection and provides a first step for minimizing M , as given in Equation (1).

The most common routing rule, in practice as well as in the existing literature, is the Least Busy First

(LBF) policy. It consists in equiprobably sending a chat to one of the agents currently serving the smallest

number of chats. This rule is simple and fair between agents. Yet, it may not be optimal. Surprisingly, the

opposite mechanism under the Most Busy First (MBF) policy could outperform LBF in certain situations.

In what follows, we give a counterexample which shows that the known LBF policy is not optimal.

Counterexample to show that LBF is not optimal. Consider a chat queueing model with two agents

where each agent has the ability to serve up to 3 chats. In addition, we assume the same abandonment

rate in the queue and in service; γs = γq = γ. The Markov chains of this model under LBF and MBF

are depicted in Figure 3. From the transition rates, one may already observe that the most efficient load

balancing rule is not necessarily LBF. First, due to the rushing effect we could have µ3 > µ2 > µ1, which

makes the transition rates from state 2 to 1 and from state 3 to 2 higher under MBF than LBF. Second, if

µ2 < 3µ3+µ1

4 which reflects a type of convexity, the transition rate from state 4 to 3 is higher under MBF

than LBF. Figure 4 shows that LBF is not always the optimal policy. In our illustration, the performance
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Figure 3: Markov chains (a state is defined by the number of customers in the system).

of LBF is more sensitive to the increase in µ1 than the performance of MBF, which makes the former policy
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worse than the latter one for low values of µ1.
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Figure 4: M as a function of µ1 (s = 2, µ2 = 1.5, µ3 = 1, λ = 2, γ = 0.5, c1 = c2 = 0, and c3 = 1)

LBF and MBF are extreme load balancing solutions for agent selection. Although these policies are not

necessarily optimal, they are simple to implement. It is therefore interesting to determine the conditions

which make one of these policies optimal. These are given in Proposition 1 and Corollary 1. We use a myopic

approach to determine how the chats in service should be distributed among the agents to maximize the

average service rate per chat. Consider a situation with k chats in service. The function µi is defined for

integer values of i for 1 ≤ i ≤ k. We consider the Lagrange interpolation polynomial with a degree at most

equal to k− 1 which coincides with µi for i = 1, 2, · · · , k. This polynomial, denoted by µ(x), in the variable

x ≥ 0 is unique (see, e.g., Weisstein (2004)). It is given by µ(x) =
k∑

i=1

µi

(
k∏

j=1,j ̸=i

x−j
i−j

)
. One can then

compute derivatives of µ(x), since µ(x) is a polynomial in x. In particular, we define µ′(x) by µ′(x) = ∂µ(x)
∂x

and µ′′(x) by µ′′(x) = ∂2µ(x)
∂x2 . We now refer to µx or to µ(x) whether we consider the values of the service

rates defined for x ∈ N or x ∈ R, respectively.

Proposition 1 Consider a state with k chats in service. For 1 ≤ x ≤ k, if the function µ(x) + xµ′(x) is

strictly increasing (respectively decreasing), then MBF (respectively LBF) maximizes the average service rate

per chat.

Corollary 1 For 1 ≤ x ≤ k, if the function µx is strictly increasing and convex (respectively decreasing and

concave), then MBF (respectively LBF) maximizes the average service rate per chat.

The proofs of Proposition 1 and Corollary 1 are given in Section 1 of the online supplement. The point here

is that the commonly used LBF policy may not lead to optimized performance measures. In particular, if

the service rate per chat is increasing and convex, then the optimal policy is MBF in some states. In other

words, if a rushing effect is observed (agents are more efficient when they have more work to do), then it

may be better not to be fair in the distribution of work among the agents. Note however from Corollary 1

that MBF cannot be optimal irrespective of the number of chats in service. If µx is strictly increasing and
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convex in x for x ≥ 1 then µx is an unbounded function of x. This condition is unrealistic for a human

agent. Moreover, having MBF optimal irrespective of the number of chats in service and without a limit in

the number of chats per agent would mean that it is optimal to only have one agent in the contact center.

This is also unlikely to happen.

From now on, we assume that in the SWC when k chats are admitted into service, they are distributed

so as to maximize the service rate per chat. We use µk to denote the optimal service rate per chat when

k chats are in service. The overall service rate is then kµk. This overall service rate is the so-called agent

productivity. Consequently, instead of considering the number of chats per agent, we consider the overall

number of chats in the agents’ team. The agents’ team is said to be at level k if k customers (k ≥ 0) are in

service. In the next section, we address the routing optimization problem of serving a chat or keeping it in

the queue.

5 The service initiation problem in the SWC

Since the agent productivity may decrease in the number of simultaneous tasks, it could be interesting to

apply partial idling. We apply a Markov decision process approach to characterize the optimal routing policy.

The value of this type of approach is that they can lead to exact optimal policies in the long run under a

stochastic context (Pandelis, 2010; Zhuang and Li, 2012; Fianu and Davis, 2018). As mentioned above, chats

are distributed among the agents so as to maximize the average service rate per chat. One can therefore see

the number of chats in service as only one dimension of the problem. It is therefore equivalent to considering

the multi-server setting as a single server one.

Let us denote the number of chats in the queue by x (x ∈ N), and the number of chats in service by y

(y ∈ N). We then describe the possible transitions from a given state (x, y), for x, y ≥ 0.

1. An arrival in the queue with rate λ. The number of chats in the queue is increased by 1, which changes

the state to (x+ 1, y).

2. An abandonment from the queue with rate xγq. The number of chats in the queue is reduced by 1.

This changes the state to (x− 1, y).

3. A service completion with rate yµy. The number of chats in service is reduced by 1. This changes the

state to (x, y − 1).

4. An abandonment from service with rate yγs. The number of chats in service is reduced by 1. This

changes the state to (x, y − 1).

Since an abandonment from service and a service completion have the same effect on the system’s state, we

consider the departure rate per chat, denoted by dy, when y chats are in service, dy = µy + γs, for y ≥ 1.

12



At any point of time if the queue is not empty, the contact center operator has to decide whether to send a

new chat into service or not. A function which associates one of these decisions to each state of the system

is a so-called service initiation policy.

We want to determine the form of the optimal service initiation policy. One major difficulty of the analysis

is that the overall event rate is an unbounded function of actions and states because of abandonments. This

prevents the uniformization technique from being applied when defining the dynamic programming operators.

To overcome this difficulty, we propose the following approach. In Section 5.1, we restrict the analysis to the

case with no abandonments. This allows us to prove a set of structural properties from which we deduce the

form of the optimal policy. In addition, we investigate the impact of the chat arrival rate on the parameters of

the optimal policy. In Section 5.2, we extend the analysis to the case with abandonments using the smoothed

rate truncation method in order to compute the optimal policy and solve the problem of unbounded rates.

Finally, in Section 5.3, we evaluate the optimal policy in comparison with the commonly used fixed threshold

policy where each agent receive chats for service until a predefined capacity is reached.

5.1 Without abandonment (γq = γs = 0)

Without abandonment the overall event rate is bounded (otherwise the agent productivity could be infinite).

Our model is therefore uniformizable (Puterman, 1994). We therefore assume without loss of generality that

λ+max(yµy) = 1. We define a 2-step value function as follows: U0(x, y) = V0(x, y) = 0, Vn(x,−1) = 0 for

x, n ≥ 0 and

Un+1(x, y) =
c1
λ
x+

c2
λ
y + λVn(x+ 1, y) + yµyVn(x, y − 1) + (1− λ− yµy)Vn(x, y), (2)

with

Vn+1(x, y) =

{
Un+1(0, y), if x = 0,

min(Un+1(x, y), Un+1(x− 1, y + 1)), if x > 0,
(3)

for n, x, y ≥ 0. The cost parameters c1 and c2 are divided by λ in order to measure the expected waiting time

and the expected time spent in service for a given customer according to Little’s law. The long-run average

optimal actions can be obtained through value iteration, by recursively evaluating Vn using Equations (2)

and (3), for n ≥ 0. As n tends to ∞, the minimizing actions converge to the optimal ones (Puterman,

1994). For x > 0, the minimizing action is chosen between keeping a chat in the queue or starting the

service of this chat. Theorem 1 proves for increasing and concave cases of agent productivity that if some

structural properties defining the state-dependent threshold structure of the optimal policy are satisfied for

Vn, then these properties are also satisfied for Vn+1. They therefore hold for every n. As n tends to infinity,

the optimal policy converges to the unique average optimal policy. This convergence result is ensured by
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Theorem 8.10.1 in Puterman (1994) since our problem satisfies the conditions of the theorem (countable

state set, finite set of actions and uniformizable system). More explicitly, a state-dependent threshold policy

is characterized by the fact that if keeping a customer in the queue is optimal in x, then keeping a customer

is also optimal in x+ 1. A sufficient condition is

Vn(x, y + 1)− Vn(x+ 1, y) ≤ 0 =⇒ Vn(x+ 1, y + 1)− Vn(x+ 2, y) ≤ 0.

This condition is satisfied if

Vn(x+ 2, y) + Vn(x, y + 1)− Vn(x+ 1, y + 1)− Vn(x+ 1, y) ≥ 0.

Theorem 1 If yµy is increasing and concave in y, then the optimal policy is a state-dependent threshold

policy. This threshold is increasing in the variables x and y. More precisely, one can define a threshold

function, y = u(x) for x > 0, such that the optimal action in state (x, y) is to route a chat in service if and

only if y ≤ u(x).

The proof of Theorem 1 is given in Section 2 of the online supplement.

Numerical illustration. Figure 5 illustrates Theorem 1. We choose µy = 1√
y for 1 ≤ y ≤ 50, and µy = 0

for y > 50. The function yµy is therefore increasing and concave in y (Figure 5(c)). Figure 5(a) gives the

optimal policy. It is defined by a threshold function, y = u(x), which separates the states where it is optimal

to serve a chat (on or below the curve) from those where it is optimal to keep a chat in the queue (strictly

above the curve). As proven in Theorem 1, we observe that the threshold function is increasing in x. In

addition, we observe that the function u(x) is characterized by a first important jump at x = 1 followed by

smaller ones. This means that an agent should serve up to 6 chats irrespective of the system’s state. Yet,

under low demand situations, an agent cannot necessarily have at least 6 chats at all times. One way to

avoid the inefficient use of the contact center resources is to allow agents to initiate outbound chats. This

possibility is investigated in Section 3 of the online supplement.

Impact of the arrival rate. We now want to investigate the impact of the arrival rate on the reservation

policy. Proposition 2 states that reservation decreases with the arrival rate. In other words, at a state (x, y)

(x, y ≥ 0), if the optimal action is to keep a chat in the queue for a given arrival rate λ1, then with λ2 ≤ λ1

it is also optimal to keep a chat in the queue. This is a confirmation of the observation made on the real

data in the introduction. The more the system is congested, the more likely the decision will be to have

more chats per agent.

Proposition 2 Consider two identical situations with increasing and concave agent productivity except that
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Figure 5: Numerical illustration (λ = 5, γq = γs = 0, c1 = 0.1, c2 = 1 and c3 = 0)

the first has arrival rate λ1 and the second has λ2. In each situation, the optimal policy is a state-dependent

threshold policy defined by the functions y = u1(x) and y = u2(x). If λ1 ≥ λ2, then u1(x) ≥ u2(x), for x > 0.

The proof is given in Section 4 of the online supplement. The idea is to consider two systems with two

different arrival rates and to prove that if it is optimal to serve a customer at a given state (x, y) in the

system with the smallest arrival rate, then it is also optimal to serve a customer at state (x, y) in the other

system.

5.2 With abandonment (γs, γq ≥ 0)

We now include the feature of abandonment. In order to transform the initial continuous-time Markov

decision process into a discrete-time one, the Markov decision process has to be uniformizable. In other words,

the jump rates must be uniformly bounded as a function of actions and states. Yet, with abandonment,

the jump rates are unbounded functions of states. One solution to overcome this problem is to truncate the

state space. However, a simple truncation does not preserve the structural properties of the initial model

and may not allow us to derive the optimal policy. In particular, a simple truncation breaks the convexity

properties of the value in the number of chats in the queue (variable x) at the truncated state.

To overcome this difficulty, Bhulai et al. (2014) develop a new method called the smoothed rate truncation
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method. This method uses linearly smoothed transition rates, such that the system retains the structural

properties of the infinite system. The approximation is obtained by linearly decreasing the relevant transition

rates as functions of the state variables until these rates equal zero. The method provides a naturally finite

state system. More precisely, the transition structure is modified in the smoothed rate system using the

control parameter N such that the transition rate from state (x, y) to state (x′, y′), denoted by t(x,y),(x′,y′),

is given by

t(x,y),(x′,y′) =



(
λ− x λ

N

)+
, for x′ = x+ 1, y′ = y, and x, y ≥ 0,(

γq − y
γq

N

)+
x, for x′ = x− 1, y′ = y, and x > 0, y ≥ 0,(

dy − x
dy

N

)+
y, for x′ = x, y′ = y − 1, and x ≥ 0, y > 0,

0, otherwise.

As N tends to infinity, the smoothed rate system converges to the original one. This allows to determine the

optimal policy and the relevant performance measures. The convergence result is proven in Theorem 3.1 of

Bhulai et al. (2014). Since the smoothed rate system has a finite number of states, it is uniformizable. We can

therefore redefine the relative value function associated with our model assuming λ+γqN+γsN+µmaxN = 1

(uniformization). Again, we choose to formulate a 2-step value function. Let us use Vn(x, y) to denote the

expected costs over n steps, for n, x, y ≥ 0. We have

Un+1(x, y) =
c1
λ
x+

c2
λ
y +

(
λ− x

λ

N

)+

Vn(x+ 1, y) +
(
γq − y

γq
N

)+
x
(
Vn(x− 1, y) +

c3
λ

)
(4)

+

(
dy − x

dy
N

)+

yVn(x, y − 1) +
(
γs − x

γs
N

)+
y
c3
λ

+

(
1−

(
λ− x

λ

N

)+

−
(
γq − y

γq
N

)+
x−

(
dy − x

dy
N

)+

y

)
Vn(x, y),

with

Vn+1(x, y) =

{
Un+1(0, y) if x = 0

min(Un+1(x, y), Un+1(x− 1, y + 1)) if x > 0
, (5)

for n, x, y ≥ 0 and an arbitrary V0(x, y) for x, y ≥ 0. We choose V0(x, y) = U0(x, y) = 0 for x, y ≥ 0. We

divide c3 by λ because we are interested in the proportion of abandonment.

Not all structural properties exhibited in Theorem 1 can be proven under a value iteration step. However

in Theorem 2, we prove that the main structural properties (first and second order monotonicities in x and y

and the supermodularity) are maintained in the induction step from Vn to Un+1 when ydy is increasing and

concave. In a context with abandonment, this partly proves that the optimal policy is a state-dependent

threshold policy as in Theorem 1. The condition on the departure rates in Theorem 2 is a natural extension

of the condition on the service rates in Theorem 1. The proof is given in Section 5 of the online supplement.
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Theorem 2 Consider the class of functions G from N2 to R defined as follows: f ∈ G if for x, y ≥ 0, we

have

f(x+ 1, y) ≥ f(x, y),

f(x, y + 1) ≥ f(x, y),

f(x+ 2, y) + f(x, y) ≥ 2f(x+ 1, y),

f(x, y + 2) + f(x, y) ≥ 2f(x, y + 1),

f(x, y) + f(x+ 1, y + 1) ≥ f(x+ 1, y) + f(x, y + 1).

If ydy is increasing and concave in y, and if Vn ∈ G then Un+1 ∈ G.

Although the optimal policy cannot be completely proven, we numerically observe that it is a state-

dependent threshold one even when the conditions of Theorem 2 are not satisfied. As illustrations, we

consider the following three cases for the change in the service rates.

• Case 1: λ = 30, µy = 4− 0.1y, for 1 ≤ y ≤ 20 and µy = 42/y, for y ≥ 21.

• Case 2: λ = 10, µ1 = 0.1, µ2 = 0.5, µ3 = 0.9, µ4 = 1.1, µ5 = 1.2, µ6 = 1.3, µ7 = 1.4, µy+8 = 1.5−0.1y,

for 0 ≤ y ≤ 15, and µ15+y = 0, for y ≥ 0.

• Case 3: λ = 6, µy = 0.1y, for 1 ≤ y ≤ 8 and µy = 0, for y ≥ 9.

To obtain the optimal policy, we choose N high enough such that any further increase in N would not modify

the state-dependent threshold. Case 1 corresponds to the condition of Theorem 1 where yµy is increasing

and concave (Figure 6(b)). This case illustrates a situation where the overall throughput of served chats

increases with the number of chats in service but the service time per chat decreases with the number of chats

in service. Cases 2 and 3 are likely to correspond to realistic situations for the change in the service rate which

are not represented in the condition of Theorem 1. Case 2 corresponds to a case where the productivity of the

agents’ team is first increasing then decreasing (Figure 7(b)). The increasing part is the gain of productivity

obtained due to simultaneity when the number of simultaneously served chats is limited. The decreasing

part illustrates the inability of agents to serve an excessive number of chats simultaneously which may reduce

their productivity. Case 3 corresponds in turn to a case where the productivity is increasing and convex but

limited to a capacity of 8 chats (Figure 8(b)). This case is an illustration of the rushing effect mentioned in

the introduction section. For all cases, even for those where ydy is not increasing and concave (Cases 2 and

3), the optimal policy is an increasing state-dependent threshold policy as illustrated in Figures 6(a), 7(a),

and 8(a). Examples of service rate forms which do not lead to an increasing state-dependent threshold may

nevertheless exist. This may happen for instance when the system is blocked for a given quantity of chats in

service and only an extra chat in service could restart the agents’ work. We provide an illustration of such
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Figure 6: Case 1 (λ = 30, γq = γs = 1, c1 = 0.1, c2 = 1 and c3 = 0.01)

�

�

�

�

�

��

��

��

� �� �� �� �� ��

�

�

�����

����

(a) Optimal policy

�

�

�

�

�

��

��

��

� � �� �� �� �� ��

(b) Agent productivity

Figure 7: Case 2 (λ = 10, γq = γs = 1, c1 = 0.1, c2 = 1 and c3 = 0.01)
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Figure 8: Case 3 (λ = 6, γq = γs = 1, c1 = 0.1, c2 = 1 and c3 = 0.01)

a case in Section 6 of the online supplement. Note however that such examples are not likely to happen in

real-life.

5.3 Comparison with the fixed threshold policy

We now evaluate the optimal state-dependent threshold policy for chat initiation in comparison with the

fixed threshold policy. The fixed threshold policy is controlled by a parameter u such that the number of chats
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allowed in service per agent is at most equal to u. The parameter u determines the service capacity per agent.

More precisely, a chat is equiprobably routed to one of the least busy agents if there is at least one agent

with strictly less than u chats in service. If all agents have u chats in service, then an incoming chat waits

in the queue. In other words, the fixed threshold policy is a special case of the state-dependent threshold

policy where the threshold function u(x) defined in Theorem 1 is a constant and where the LBF policy is

applied. The fixed threshold policy is used in practice because it is easy to implement. Yet, the servers’

capacity is used to its maximum most of the time (Tezcan and Zhang, 2014) instead of being optimized.

In Figure 9, we show that using agent capacity at its maximal value may lead to poor performance. For

instance, we observe that for λ = 5, we have 22.5% more abandonment for u = 5 (maximal capacity) than

for u = 2 (optimal fixed threshold).
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Figure 9: Impact of the fixed threshold (γs = γq = 0.5, µ1 = 1, µ2 = 0.6, µ3 = 0.2, µ4 = 0.1, µ5 = 0.01,
µx = 0, for x > 5)

Table 1 gives the performance measures under the optimal fixed threshold policy, the maximal fixed

threshold policy (u = 7 in our illustrations) and the optimal state-dependent policy. The last column gives

the differences, defined as d1 = M(Optimal fixed threshold policy) − M(state-dependent policy) and d2 =

M(Maximal fixed threshold policy) −M(state-dependent policy). We choose c1 = c2 = 0, and c3 = 1 such

that the objective is to minimize the overall proportion of abandonment, M = Pa,q +Pa,s. The performance

measures are obtained via a Markov chain analysis. The closed-form expressions of the performance measures

under the optimal routing policy are derived in Section 7 of the online supplement.

The optimal fixed threshold is not necessarily equal to the agents’ capacity. We only allow 1 or 2 chats per

agent in Table 1 when at most 7 chats could be served per agent. The reason is related to two phenomena.

First, increasing the number of chats in service may reduce the agent productivity. This in turn may lead

to more abandonment from service. Second, the abandonment from the queue may help to reduce the

congestion of the contact center.

As expected, the state-dependent threshold policy outperforms the fixed threshold policy. Yet, the

difference between the two policies is not significant. This can be understood from the figures in Section 5.2.

First, in many cases (as in Case 3, Figure 8) the fixed threshold policy is optimal. Second, Figure 6 and
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Table 1: Performance comparison (γs = 1, γq = 0.1, µ1 = 1, µ2 = 0.7, µ3 = 0.6, µ4 = 0.5, µ5 = 0.4, µ6 = 0.3,
µ7 = 0.2, and µx = 0 for x > 7)

Optimal fixed threshold Maximal fixed threshold Optimal state-dependent
λ s u Pa,q Pa,s M Pa,q Pa,s M Pa,q Pa,s M d1 d2

1 1 1 3.866% 48.067% 51.933% 0.000% 54.094% 54.094% 3.829% 48.103% 51.932% 0.001% 2.163%
2 1 2 2.321% 54.799% 57.121% 0.001% 58.073% 58.074% 4.582% 51.379% 55.961% 1.159% 2.112%
3 1 2 7.269% 53.556% 60.825% 0.013% 61.346% 61.358% 2.349% 56.990% 59.339% 1.486% 2.019%

5 5 1 0.243% 49.879% 50.121% 0.000% 50.431% 50.431% 0.243% 49.879% 50.121% 0.000% 0.310%
10 5 1 6.499% 46.751% 53.249% 0.000% 53.437% 53.437% 2.397% 50.322% 52.719% 0.530% 0.718%
15 5 2 1.783% 56.190% 57.973% 0.000% 58.622% 58.622% 0.068% 57.472% 57.540% 0.433% 1.082%

10 10 1 0.035% 49.983% 50.017% 0.000% 50.074% 50.074% 0.035% 49.983% 50.017% 0.000% 0.057%
20 10 1 4.603% 47.699% 52.301% 0.000% 52.446% 52.446% 1.842% 50.090% 51.932% 0.370% 0.514%
30 10 2 0.806% 56.658% 57.464% 0.000% 58.257% 58.257% 0.000% 57.331% 57.331% 0.134% 0.926%

100 100 1 0.000% 50.000% 50.000% 0.000% 50.000% 50.000% 0.000% 50.000% 50.000% 0.000% 0.000%
200 100 1 1.458% 49.271% 50.729% 0.000% 50.778% 50.778% 0.588% 50.027% 50.615% 0.114% 0.164%
300 100 2 0.000% 57.143% 57.143% 0.000% 57.143% 57.143% 0.000% 57.143% 57.143% 0.000% 0.000%

Figure 7 reveal that the optimal policy defined by the function u(x) is characterized by a first important jump

of u(x) at x = 1 followed by smaller jumps which are more and more spread out as the number of chats in

the queue increases. This first jump of u(x) has a major impact on the system performance compared to the

other ones. In many cases this first jump corresponds to the optimal service capacity of the fixed threshold

policy. The performance of the fixed threshold policy is therefore relatively close to that of the optimal

one. This justifies its use in practice provided that the fixed threshold is optimized. We note however that

the difference between the two policies is a bit greater for smaller values of s. In large contact centers, the

beneficial effect of pooling reduces the additional benefits resulting from clever routing strategies. Finally,

as an illustration of Proposition 2, we observe that the optimal threshold and the state-dependent threshold

increase as λ increases.

6 The chat dispatching problem in the NWC

We assume here that a chat cannot be handed to another agent during a service and that each agent has its

own queue. The problem consists in optimizing the routing of chats upon arrival to parallel queues and in

dispatching chats from one queue to the other at other event epochs (service completions or abandonment

times). The problem of routing jobs/customers upon arrival to a set of parallel queues to achieve some

performance objectives has received a high interest in the research literature (Winston, 1977; Hordijk and

Koole, 1992; Whitt, 1986; Koole et al., 1999; Guo et al., 2004; Hordijk and van der Laan, 2004; Anselmi

and Gaujal, 2011; Anselmi and Casale, 2013). The motivation is the complexity of the theoretical problem

together with its usefulness in practice. The main difficulty in finding the optimal routing policy is the high

dimensionality of the system. Here, we propose using the one-step policy improvement method introduced by

Ott and Krishnan (1992) and the developed the work by Bhulai and Koole (2003a) to obtain a near-optimal
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policy. One-step improvement works for models for which the value function of a certain policy can be

computed. It consists in performing the improvement step on the basis of this initial policy. The motivation

for considering this method is that policy improvement gives the biggest improvement during the first step

(Ott and Krishnan, 1992).

We propose the following approach to derive a dispatching policy in the NWC. In Section 6.1, we derive the

explicit expression of the relative value function for a single server chat queue. The approach is explained

under the optimal state-dependent policy and explicit expressions of the relative value function and the

average cost are given with a fixed threshold policy. Next, in Section 6.2, we provide a one-step improvement

algorithm based on the results of Section 6.1 to derive our policy for chat dispatching. Finally, in Section

6.3, we evaluate our improved policy in comparison with the optimal one in the SWC.

6.1 Relative value function for a single chat queue

We derive the relative value function of a single server chat queue under the optimal initiation policy. As

proven in Section 5, a state-dependent threshold policy defined by the function y = u(x) is optimal for the

chat initiation problem in the SWC. The result also applies to a single server queue in the NWC (there

is no question of sharing work in a single server queue). As in Section 5, a state of the system is defined

by the couple (x, y), where x is the number of chats in the queue and y is the number of chats in service.

Due to Proposition 8.2.1 of Puterman (1994), the long-run average cost is independent of the initial state.

The dynamic programming optimality equation which gives the relative value function V (x, y) of the single

server chat queue is given by

V (x, y) +M =
c1
λ
x+

c2
λ
y + λ

[
1y>u(x)V (x+ 1, y) + 1y≤u(x)V (x, y + 1)

]
+ y(µy + γs)

[
1y>u(x)V (x, y − 1)

(6)

+1y≤u(x)V (x− 1, y)
]
+

c3
λ
γsy + xγqV (x− 1, y) +

c3
λ
γqx+ (1− λ− xγq − y(µy + γs))V (x, y),

for x, y ≥ 0, where 1x∈A is the indicator function of a given subset A, with V (0, 0) = 0 (reference state).

Equation (6) corresponds to an infinite set of equations. One solution to solve this system is to truncate the

number of states in order to obtain a finite set of equations so as to approximate V (x, y). Instead, we propose

using another approach based on the properties of u(x). Since u(x) is an increasing and bounded function of

x which takes values in N, there exists x∗, u ≥ 0 such that u(x) = u for x ≥ x∗. This means that if the number

of chats in the system is higher than or equal to x∗ + u, then u chats are in service and the remaining ones

are in the queue. No other possibility can be encountered. This reduces the dimensionality of the problem.

Instead of a 2-dimensional value function, we obtain a 1-dimensional one which can be computed explicitly

as a function of V (x∗, u). After this step, a finite set of equations remains which corresponds to the states
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with strictly less than x∗ + u chats in the system. By solving the set of equations, one can compute V (x, y)

and M .

The difficult part of this approach is to explicitly derive the value function and the long run average cost

if at least x∗+u chats are in the system. For this purpose, we consider the case x∗ = 0. The optimal policy is

therefore a fixed threshold policy with u(x) = u, for x ≥ 0. This particular case is interesting since the value

function can be explicitly obtained at all states of the system. The case x∗ > 0 can be obtained similarly.

However, a remaining finite set of equations depending on u(x) has to be solved to obtain V (x, y). This in

turn does not allow us to obtain V (x, y) in closed-form if x∗ > 0. If x∗ = 0, the value function, V (x), only

depends on the number of chats in the system, x. The dynamic programming optimality equations which

give the relative value function V (x) are thus given by

V (0) +M = λV (1) + (1− λ)V (0), (7)

V (x) +M =
c2
λ
x+ λV (x+ 1) + dxV (x− 1) + xγs

c3
λ

+ (1− λ− dx)V (x), for 0 < x ≤ u− 1, (8)

V (x) +M =
c1
λ
(x− u) +

c2
λ
u+ λV (x+ 1) + dxV (x− 1) + (x− u)γq

c3
λ

+ uγs
c3
λ

(9)

+ (1− λ− dx)V (x), for x ≥ u,

where dx = min(x, u)(γs + µmin(x,u)) + (x− u)+γq.

In Theorem 3, we give the closed-form expressions of the relative value function as a function of the

polynomial in the variable z, Px,k(z) for 0 ≤ k ≤ x ≤ n, defined by

Px,k(z) =

x−k∑
n=0

zn ·

1 +

x∑
i=k+n+1

i∏
j=k+n+1

tj

 ,

where tx = dx

λ . Because of linearity, the value function can be broken down into V (x) = Vc1(x) + Vc2(x) +

Vc3(x), which are due to the different components of M . The idea of the proof is to introduce the difference

∆(x) = V (x+ 1)− V (x), for x ≥ 0. The initial value of ∆(0) can be directly expressed as a function of M .

Subtracting the expression of V (x) from the expression of V (x+1) using the optimality equations allows us

to derive a linear relation for ∆(x). Using this relation, we obtain an expression of ∆(x) as a function of M .

Finally, using the reference state, we obtain the unique expression of g which in turn leads to the expression

of V (x) via V (x) =
∑

k≤x−1

∆(k). The proof is given in Section 8 of the online supplement.
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Theorem 3 We have for x ≥ 0,

Vc1(x) = Px−1,0(1) ·
E(Wq)

λ
− P ′

x−1,u(1) ·
c1
λ2

, with E(Wq) =
c1
λ

·

∞∑
k=u

(k − u)
k∏

j=1

aj

∞∑
k=0

k∏
j=1

aj

Vc2(x) = Px−1,0(1) ·
E(S)

λ
− (P ′

x−1,0(1)− P ′
x−1,u(1)) ·

c2
λ2

, with E(S) =
c2
λ

·

s∑
k=1

k
k∏

j=1

aj + u
∞∑

k=u+1

k∏
j=1

aj

∞∑
k=0

k∏
j=1

aj

,

Vc3(x) = Px−1,0(1) ·
Pa

λ
− (P ′

x−1,0(1)− P ′
x−1,u(1)) ·

c3γs
λ2

− P ′
x−1,u(1) ·

c3γq
λ2

,

with Pa =
c3
λ

γs ·

s∑
k=1

k
k∏

j=1

aj + u
∞∑

k=u+1

k∏
j=1

aj

∞∑
k=0

k∏
j=1

aj

+ γq ·

∞∑
k=u+1

(k − u)
k∏

j=1

aj

∞∑
k=0

k∏
j=1

aj

 ,

where ax = λ
min(x,u)(µmin(x,u)+γs)+(x−u)+γq

.

Remark. The approach developed in this section to obtain the relative value function for the chat queue can

be easily extended to a more general setting with state-dependent departure rates to find routing solutions

for the historical problem of routing to parallel queues. The approach may be useful for a context with

abandonment. This contribution is explained in Sections 8 and 9 of the online supplement. In particular,

we show that our result meets the ones derived in the work by Bhulai and Koole (2003a) for the M/M/s,

M/M/1 or M/M/∞ queues by choosing u = s, u = 1 or letting u tends to infinity in Theorem 3. In Section

9 of the online supplement, we show how to obtain the explicit relative value function in the M/M/s+M

queue. To the best of our knowledge, this article is the first to provide the relative value function for this

queue.

6.2 The chat dispatching algorithm

In what follows, we explain how the derivation of the relative value function can be used to obtain an efficient

chat dispatching policy in the NWC.

The initial Bernoulli policy. Consider a situation with s identical agents and s parallel queues. As

a starting point, we use the so-called Bernoulli policy with fixed probabilities p1, p2, · · · , ps−1, and ps =

1− p1 − p2 − · · · ps−1. This decouples the queues such that each chat queue behaves as a single independent

chat queue with a Poisson arrival rate p1 ·λ, p2 ·λ, · · · , and ps ·λ. We can therefore derive the value function

and the average cost in each queue using the results of Section 6.1. The average cost and the value function

for the whole system is given by the sum of the individual average costs and the sum of the individual value
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functions of the different queues. The parameters p1, p2, · · · , and ps are chosen in order to minimize the

average cost of the system. With identical agents, the computation of the optimal pi’s leads to pi =
λ
s . Note

that with heterogeneous agents, one could find situations where pi ̸= λ
s .

One-step policy improvement. Next, we improve this optimal Bernoulli policy from the minimizing

action between sending a chat to one of the s chat queues. More precisely, assume that Queue i is in state

(xi, yi), for 1 ≤ i ≤ s. We use Vi(xi, yi) to denote the value function at Queue i under the optimal Bernoulli

policy. The value function of the set of the s chat queues is V (x1, y1, x2, y2, · · · , xs, ys) = V1(x1, y1) +

V2(x2, y2) + · · · + Vs(xs, ys). The action at customer arrival consists in changing the state of one queue to

either one more chat in service or one more chat in the queue. If Queue i is chosen then the value function

becomes V1(x1, y1)+V2(x2, y2)+ · · ·+Vi−1(xi−1, yi−1)+min(Vi(xi+1, yi), Vi(xi, yi+1))+Vi+1(xi+1, yi+1)+

· · · + Vs(xs, ys) = V (x1, y1, x2, y2, · · · , xs, ys) + min(Vi(xi + 1, yi), Vi(xi, yi + 1)) − Vi(xi, yi). We want to

minimize this expression by determining the best chat queue to which to send an incoming chat. At customer

arrival, if

j = argmin
1≤i≤s

(min(Vi(xi + 1, yi), Vi(xi, yi + 1))− Vi(xi, yi)) ,

then it is optimal to send an incoming chat to Queue j. After a service departure or an abandonment, we

consider the queue which maximizes Vi(xi, yi). Assume that this queue is Queue m. If xm = 0, no action is

decided. Otherwise if xm > 0, then we choose to move a chat from Queue m to Queue j if

j = argmin
1≤i≤s

(min(Vi(xi + 1, yi), Vi(xi, yi + 1))− Vi(xi, yi) + Vm(xm − 1, ym)− Vm(xm, ym)) .

If strictly more than one queue minimizes the above expressions, one should apply an equiprobably rout-

ing. This step of improvement determines the improved dispatching policy at event epochs. Algorithm 1

summarizes the steps to obtain this policy.

Algorithm 1: Computation of the improved policy.

1. Situation at an event instant. Consider an event instant (i.e., a chat arrival or a chat departure due to

an abandonment or a service completion). Assume that Queue i is in state (xi, yi), for 1 ≤ i ≤ s, and

xi, yi ≥ 0.

2. Optimal Bernoulli policy. Determine the optimal Bernoulli policy and the related value function at Queue

i, Vi(xi, yi) using the results of Section 6.1.

3. Improvement step.

(a) If the event is an arrival, then send the chat to Queue j such that

j = argmin
1≤i≤s

(min(Vi(xi + 1, yi), Vi(xi, yi + 1))− Vi(xi, yi)),
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(b) If the event is a departure, choose Queue m such that m = argmax
1≤i≤s

Vi(xi, yi). If xm = 0, then no

action is decided. If xm > 0 then move a chat from Queue m to Queue j such that

j = argmin
1≤i≤s

(min(Vi(xi + 1, yi), Vi(xi, yi + 1))− Vi(xi, yi) + Vm(xm − 1, ym)− Vm(xm, ym)).

Remark. Our method avoids the curse of dimensionality problem. For instance, with s queues each with

capacity n and a fixed service capacity u, the optimal decision should normally be determined in (u + n)s

states. Using the one-step policy improvement method, only (u + n) × s states have to be computed. We

therefore have a linear complexity instead of an exponential one.

6.3 Evaluation of the dispatching policy

We now evaluate the performance of the dispatching policy in the NWC. Table 2 tabulates the performance

of the optimal Bernoulli policy, the performance of the dispatching policy in the NWC and the performance

of the optimal policy in the SWC which serves as a lower bound for the NWC. As in Section 5.3, we choose

c1 = c2 = 0 and c3 = 1 such that the objective is to minimize the overall proportion of abandonment. We

also choose a decreasing and concave service rate per chat and per agent such that the LBF routing rule is

optimal. Note in general that as in the SWC in Section 4, the LBF policy is not always optimal. In Section

10 of the online supplement we show an example where MBF is optimal in some states.

In our illustration, it is optimal to fully use the agents’ capacity. Theorem 3 can therefore be directly

applied with u = 10 to obtain the performance of the optimal Bernoulli policy found with an arrival rate

per chat queue equal to λ/s. The performance measures of the improved dispatching policy are found using

simulation and the result of Theorem 3. After each event (i.e., an arrival or a departure), the simulation is in-

terrupted and a routing decision is taken based on Algorithm 1. The performance of the optimal policy in the

SWC is obtained using the results of Section 5 together with the performance measures derived in Section 7 of

the online supplement. The last column gives the differences, defined as d1 = M(Optimal Bernoulli Policy)−

M(Improved Dispatching Policy) and d2 = M(Improved Dispatching Policy)−M(Optimal SWC Policy).

Table 2: Performance comparison (γs = 0.1, γq = 1, µx = 1/
√
x for 1 ≤ x ≤ 10, and µx = 0 for x > 10)

Optimal Bernoulli policy Improved dispatching policy Optimal SWC policy
λ s Pa,q Pa,s M Pa,q Pa,s M Pa,q Pa,s M d1 d2

1 2 0.000% 10.704% 10.704% 0.000% 9.981% 9.981% 0.000% 9.734% 9.734% 0.723% 0.247%
5 2 1.089% 18.147% 19.236% 0.213% 18.046% 18.259% 0.105% 17.795% 17.900% 0.977% 0.359%
8 2 11.661% 19.499% 31.160% 9.152% 20.011% 29.163% 7.637% 20.770% 28.407% 1.997% 0.756%

5 10 0.000% 10.704% 10.704% 0.000% 9.468% 9.468% 0.000% 9.105% 9.105% 1.236% 0.363%
25 10 1.089% 18.147% 19.236% 0.000% 17.953% 17.953% 0.000% 17.308% 17.308% 1.283% 0.645%
40 10 11.661% 19.499% 31.160% 4.362% 22.018% 26.380% 2.425% 22.570% 24.996% 4.780% 1.384%

50 100 0.000% 10.704% 10.704% 0.000% 9.346% 9.346% 0.000% 9.091% 9.091% 1.358% 0.255%
250 100 1.089% 18.147% 19.236% 0.000% 17.634% 17.634% 0.000% 17.197% 17.197% 1.602% 0.437%
400 100 11.661% 19.499% 31.160% 1.243% 22.914% 24.157% 0.125% 23.409% 23.533% 7.003% 0.624%
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Impact of the improvement step. The improvement step from the optimal Bernoulli policy to the

improved dispatching policy, measured by d1, can be significant (at most 7% difference). The reason is that

the improved policy is state-dependent whereas the Bernoulli one is not. The step of improvement reduces

the situations where a chat waits in a queue while an agent should serve this chat. This leads to significantly

lower values for Pa,q under the improved dispatching policy than under the optimal Bernoulli policy. With

less abandonment from the queue there should be more congestion and on average more chats per agent in

service. The chat service should therefore be slower and more abandonment from service should be observed.

However, we observe that less abandonment from the queue does not necessarily mean more abandonment

from service. With low arrival rates, we even observe an improvement of Pa,s (see lines 1 and 2) whereas

a deterioration is observed for higher arrival rates (see line 3). This means that the step of improvement

can also have a beneficial effect on Pa,s. The improvement step creates a better balance in the number of

chats in service per agent by sending incoming chats to the least busy agent in priority. This has the effect

of increasing the average service rate per chat. Less abandonment from service can thus be observed thanks

to the improvement step that one can observe for low arrival rates. Note that the chance of finding an

available agent to operate the step of improvement increases with the contact center size. This explains why

the impact of the improvement step increases with the system size (lines 3, 6 and 9 for instance).

Comparison with the SWC. The difference between the improved policy in the NWC and the optimal

one in the SWC, measured by d2, is relatively small (+0.56% on average for the different cases). It means

that the improved policy has the ability to partly compensate the impossibility of redistributing chats among

agents as in the SWC. This shows that the one-step policy improvement method yields nearly optimal policies.

Our observations are in line with those of Hwang et al. (2000) and Bhulai and Koole (2003a) who have shown

the closeness between the improved and the optimal policy in other queueing contexts. As expected, the

performance gap between the two policies increases with the arrival rate as the proportion of abandonment

increases with λ. The effect of the contact center size is less clear. The larger the contact center, the higher

the number of chats distributions among agents. This increases the possibilities of unproductive states

where some agents have too many chats while others have too few. This tends to show the negative impact

of the contact center size. Note, for instance, that in the extreme case with s = 1, the SWC and NWC

are identical. However, if the contact center is very large, an incoming chat may always find an available

agent. The distribution of chats among agents is therefore balanced with one chat per agent and there is no

difference between the SWC and NWC. For instance, with an infinite number of agents the SWC and NWC

are identical with Pa,s =
γs

γs+µ1
= 9.09% in our case as one can observe in line 7. This may explain why the

difference between the two policies is maximized for intermediate contact center size (s = 10 in Table 2).

26



7 Concluding remarks

We showed how to efficiently route chats in a contact center using agent reservation and the possibility of

sharing work or not among agents. In the shared work case, we gave the required conditions under which the

LBF and MBF routing rules are optimal. We also showed that the optimal policy for agent reservation is a

state-dependent threshold policy based on the number of chats in the queue and in service. The numerical

investigations argued for the implementation of a simpler fixed threshold policy in large contact centers

provided that this threshold is optimized. In the non-shared work case, we developed a policy improvement

algorithm to efficiently route chats. This improved policy was shown to partly compensate the negative

impact of not sharing work among the agents. Its value is to reduce the abandonment from the queue

without necessarily increasing the abandonment from service.

Several interesting areas of future research arise. It would be interesting to question the exponential

assumption for service times. Since the chat conversation is a succession of questions and answers, an Erlang

or a Coxian distribution may more appropriately model the service duration. Another challenging and

interesting direction is to develop and analyze a framework that combines chats and other channels such

as calls or emails. The possibility of switching from textual chat to video chat may also be a challenging

problem. Video chats do not allow the agent to handle different tasks simultaneously. She may be able to talk

to more than one customer at a time but these customers should have the same interests. This is different

from the textual chat channel as studied in this article. Optimizing the switch from one channel to another is

an interesting future research subject where a good balance has to be found between a simultaneous handling

(textual chats) with long service times per chat and successive handling (video chats) with shorter service

times per chat.
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