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Abstract

This study aims to determine and evaluate dynamic idling policies where an agent can idle while some

customers remain waiting. This type of policies can be employed in situations where the flow of urgent

customers does not allow the agent to spend sufficient time on back-office tasks. We model the system

as a single-agent exponential queue with abandonment. The objective is to minimize the system’s

congestion while ensuring a certain proportion of idling time for the agent. Using a Markov decision

process approach, we prove that the optimal policy is a threshold policy according to which the agent

should idle above (below) a certain threshold on the queue length if the congestion-related performance

measure is concave (convex) with respect to the number of customers present. We subsequently obtain

the stationary probabilities, performance measures, and idling time duration, expressed using complex

integrals. We show how these integrals can be numerically computed and provide simpler expressions for

fast-agent and heavy-traffic asymptotic cases. In practice, the most common way to regulate congestion is

to control access to the service by rejecting some customers upon arrival. Our analysis reveals that idling

policies allow high levels of idling probability that such rejection policies cannot reach. Furthermore,

the greatest benefit of implementing an optimal idling policy occurs when the objective occupation rate

is close to 50% in highly congested situations.
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1 Introduction

Service systems, such as call centers or hospitals, commonly encounter situations of high demand, leading

to high congestion and high agent utilization. These situations may arise due to an under staffing decision,

a peak of demand, or simply the variability of arrival and service processes. High agent utilization is

usually viewed as an efficient use of resources since agents rarely idle during their work shifts. However,

too high a rate of agent utilization may also result in fatigue, burn-out, low quality of service interaction,

and inappropriate decisions (Castanheira and Chambel, 2010). For instance, Allan et al. (2019) analyzed

a contact center where nurses were in charge of the routing of patients. They demonstrated that the

longer nurses work without rest breaks, the more frequently they make the decision to arrange for callers

to see another health professional the same day, which consequently leads to a deterioration of the system’s



performance. On the contrary, actively idling or taking breaks may reduce tiredness and allow employees

to bond with their colleagues, which, in turn, may be beneficial for the company. For example, Waber

et al. (2010) confirmed the hypothesis that the strength of an individual’s social group was positively

related to productivity measured by the average call handle time. Furthermore, agents in charge of urgent

customers arriving over time may also be asked to spend time on back-office tasks (e.g., emails). Due to

the preemptive priority of urgent customers over back-office tasks, the time spent on the latter may be

insufficient to maintain the efficient functioning of the service.

Therefore, even in congested situations, it may be necessary for an agent to interrupt the flow of services

to preserve a certain proportion of idling time. In our context, idling refers to time not spent on serving

urgent customers. It can encompass time spent on back-office tasks. The academic literature has previously

focused on the scheduling of breaks using static decisions based on past information with time-dependent

parameters (Bechtold et al., 1984; Janaro and Bechtold, 1985; Alfares, 2007; Lujak and Billhardt, 2017).

We refer the reader to the recent survey of Xu and Hall (2021) for an overview of fatigue management with

a focus on work-rest scheduling. Other studies have considered the dynamic scheduling of idling time for

the purpose of optimizing certain operational performance measures although without including idling time

in the objectives (see Section 2).

The aim of this study is to characterize and compute the optimal dynamic idling policy for an agent

such that certain congestion-related performance measures are minimized while maintaining the proportion

of busy time below a threshold level. We analyze this problem for a single-agent exponential queue with

impatient customers. At each service completion, the agent may decide either to continue serving customers

or to remain idle. When the agent is idling, service initiation can start at a chosen moment. The formulation

of the congestion cost function is general. Specifically, it can be adjusted to moments of the number of

customers in the queue, to the rate and moments of abandonment, or to the expected excess (i.e., the

expected wait above a given threshold).

To the best of our knowledge, the optimal policy for this problem has not been investigated in the

academic literature. One reason is that due to flow conservation, the proportion of busy time and the

expected number of customers in the queue are related in a linear way. Specifically, in an infinite capacity

queue, the arrival rate is equal to the rate of abandonment plus the rate of served customers. The rate of

abandonment is proportional to the expected number of customers in the queue. Also, the rate of served

customers is proportional to the proportion of busy time of the agent. Therefore, for an optimization

problem involving a linear performance measure, any policy that assigns a certain value to the proportion of
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busy time would achieve the same operational performance measure. Consequently, the policy optimization

question is irrelevant with linear performance measures.

However, for nonlinear performance measures that are used in practice, such as waiting time percentiles

(Legros, 2016), expected excess (Koole, 2013), or measures that involve moments of the queue length such

as fairness measures (Avi-Itzhak et al., 2008) or queue length distribution (Shore, 2006), the dynamic idling

policy matters. It is thus essential to determine the best way to achieve a certain level of idling time

while limiting the impact on the operational performance measures. To address this issue, we formulate the

optimization problem as a Markov decision process. We prove structural properties of the value function that

lead to the form of the optimal policy. When the service rate is greater than or equal to the abandonment

rate, we prove that the optimal idling policy is of threshold type when the cost function is either convex or

concave with respect to the number of customers in the queue. When the cost function is convex (concave),

there exists a threshold on the queue length such that idling is optimal below (above) this threshold.

The concave case contradicts the intuition according to which the decision to work is incentivized by the

number of waiting customers. We also prove that idling above a threshold is optimal for some nonconcave

cost functions when the abandonment rate is greater than or equal to the service rate.

Next, we evaluate the performance measures under the two aforementioned policies. In the evaluation,

we also consider a nonoptimal threshold-type reference policy. For this reference policy, the agent works

until the system is empty. Once it is empty, the agent waits until the queue size reaches a given threshold

level to start serving customers. Although nonoptimal, this policy has the advantage of not letting the

agent leave any customers waiting in the queue since this would not be appreciated in visible systems. It

also reduces the frequency of switches between idle and busy states for the agent (Legros et al., 2020).

The stationary probabilities are computed via a two-dimensional Markov chain analysis. The formulas

are obtained in closed form. However, some complex integrals are involved in the evaluation. Using the

asymptotic values of these integrals and their Wronskian formulation, we determine a numerical way to

compute them. Next, we determine the idling duration. The evaluation involves confluent hypergeometric

functions of the first and second kind (Daalhuis, 2010).

Our numerical experiments show that in most cases, decreasing the agent’s occupation rate increases

the system’s congestion due to the lack of work conservation when the agent idles while the queue is not

empty. In addition, we illustrate that idling above a certain threshold is optimal for concave performance

measures, while the opposite is true for convex ones. In both cases, the optimal policy provides significant

improvements as compared to the reference policy when the agent expects to maintain around 50% idling
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time in a highly congested situation. When the idling-time proportion is far from 50%, either due to the

agent’s decision or to the system’s congestion, the dynamic idling policy does not significantly affect the

operational performance, leading to a reduced difference between the different idling policies. We further

observe that the operational performance is convex with respect to the agent’s occupation rate under the

optimal policy. This means that if the dynamic idling policy is well selected, increasing the proportion of

idling time may only have a small detrimental impact on operational performance. We also illustrate that

the main advantage of the reference policy is to allow the agent to have longer breaks compared to the

break duration under the optimal policy. Next, we provide approximations for the probability of the agent

being busy. We consider fast-agent, high-congestion and Normal approximations. These approximations

are useful as they lead to simpler expressions for the idling probability and simpler computation of the

optimal threshold level. Finally, we compare the idling policies considered in this study with a rejection

policy, where some customers are rejected upon arrival with the aim of reducing the system’s congestion.

Rejection policies are the most commonly implemented and studied policies to obtain a good trade-off

between the system’s congestion and the rate of served customers (Lin and Ross, 2004; Koçağa and Ward,

2010; Su et al., 2019). The comparison reveals that idling policies can only be implemented when the

objective occupation rate is low, whereas a rejection policy achieves better performance measures when the

desired idling probability is low.

Structure of the paper. Section 2 provides a review of the related academic literature. Section 3

presents the formulation of the model and optimization question. Section 4 determines the optimal policy

from a Markov decision process approach. In Section 5 derives the stationary probabilities and performance

measures. Section 6 provides numerical experiments and approximations. Finally, with Section 7 the paper

is concluded and avenues for future research provided. A table of notation and the proofs of the main

results are given in the appendix at the end of the paper.

2 Literature review

First, since our study considers the optimization of idling decisions, we examine prior studies in this field

that have addressed different optimization questions than ours. Next, in relation to the possible multitasking

applications of our analysis, we present the existing literature on blended queues. Finally, we present an

overview of queueing models involving breaks and vacations.

Different studies have revealed that it may be optimal to maintain some agents idling while the queue
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is not empty. In other words, work conservation is shown to be not always optimal, as in the current paper.

For instance, in the slow-server problem, it may be optimal to let the slowest agents idle, while nonidling is

optimal for the fastest agent for the purpose of minimizing the expected time spent in the system (Koole,

1995; Cabral, 2005; Rykov and Efrosinin, 2009; Özkan and Kharoufeh, 2014). Also, when customers are

heterogeneous, it may be optimal to implement strategic delays (e.g., for the most patient customers) with

the aim of maximizing the system’s revenue (Afèche, 2013; Afèche and Pavlin, 2016; Maglaras et al., 2018).

For service rate optimization problems where a trade-off between a holding cost and mean service rate has

to be determined, previous studies showed that the optimal state-dependent service rate is located at the

boundary of the value domain (i.e., a bang-bang control) (Ma and Ao, 1994; Kumar et al., 2013; Xia, 2014;

Xia et al., 2017). In particular, if zero is at the boundary of the service rate’s interval, idling is optimal

in some states as we prove in this study. Finally, with a single class of homogeneous customers, Zhan and

Ward (2019) and Zhong et al. (2022) have shown that intentional idling may arise as an asymptotically

optimal regime where customers may wait in a holding area before joining the queue when a trade-off

between agent utilization costs and operational costs has to be determined. These references illustrate

the value of non-work-conserving policies for solving various optimization problems. However, this study

differs from the aforementioned references as we characterize and prove the form of the optimal policy in

the general regime for an optimization problem involving a single class of impatient customers.

The main idea in queue-blending models is to determine efficient scheduling policies for the treatment of

urgent and nonurgent jobs. The optimization problem in relevant studies consists of maximizing the time

spent on nonurgent jobs while imposing a service level constraint on urgent ones. In this context, the idling

decision is referred to as a reservation strategy (Bhulai and Koole, 2003; Pang and Perry, 2014; Legros,

2017; Legros et al., 2021; Legros, 2021). This implies that the flow of urgent customers allows for sufficient

idling times in order to treat nonurgent tasks. This is an important difference with our context, where the

flow of urgent customers does not allow the agent to spend a sufficient amount of time on back-office tasks.

Blending models have been widely studied in the context of call centers. Models by Brandt and Brandt

(1999) and Deslauriers et al. (2007) evaluated performance in such systems. Bhulai and Koole (2003) and

Gans and Zhou (2003) considered queue-blending models in which the inbound jobs have a nonpreemptive

priority over the outbound ones. They showed that the optimal policy is a reservation threshold policy

on the number of busy agents. This also makes a difference with our context, where urgent customers

can interrupt the treatment of some back-office tasks. In a context with switching time allocation between

urgent and nonurgent tasks, Legros et al. (2020) showed that idling in the presence of waiting customers
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may be optimal to avoid too many switches. Further references on queue-blending operations include Keblis

and Chen (2006); Pichitlamken et al. (2003); Pang and Perry (2014).

Some academic research has focused on the performance analysis of queues with vacations. Fuhrmann

(1984) decomposed the number of customers in an M/G/1 queue in which the agent begins a vacation of

random length each time the system becomes empty. This model is close to the reference policy considered in

this study. The difference is that the vacation time is controlled in our study. Later, Kella (1989) dealt with

the M/G/1 queue with agent vacations in which the return of the agent to service depends on the number of

customers present in the system, as in the reference policy in this study. The authors determined expressions

that characterize the optimal number of customers, below which the agent should not start a new service

period. Li et al. (1997) considered an M/G/1 queue with Bernoulli vacations and agent breakdowns. Using

a supplementary variable method, they obtained a transient solution for queueing and reliability measures

of interest. Chao and Zhao (1998) investigated a GI/M/c queue with two classes of vacation mechanisms:

station vacation and agent vacation. For both models, they derived steady-state probabilities of matrix

geometric form, and developed computational algorithms to obtain numerical solutions. Ke (2003) studied

a queue with the decision-maker able to turn a single agent on at any arrival epoch or off at any service

completion. When the system is empty, the agent takes a vacation of exponential random length. They

derived the distribution of the system size using the probability-generating function. Altman and Yechiali

(2006) analyzed a systems with agents vacations and customer impatience, as in this study. They presented

a comprehensive analysis of the single-agent, M/M/1, and M/G/1 queues, as well as of the multi-agent

M/M/c queue, for both the multiple- and single-vacation cases. Finally, Zhang et al. (2020) investigated a

queueing-inventory system under continuous review with a random order size policy and lost sales, which

can be modeled as a queue with agent vacations. They derived the stationary joint distribution of the

queue length, the on-hand inventory level, and the status of the agent in explicit product form. To the best

our knowledge, the optimal policies determined in this study have not yet been investigated as a way to

operate breaks for the agent.

3 Formulation of the problem

In this section, we explain the model assumptions and formulate the optimization question. We consider

a single-agent queue with infinite capacity where customers are served in the order of their arrival. The

customers’ arrival process is Poisson with rate λ, and service times are exponentially distributed with rate

µ. Furthermore, customers in the queue (excluding the one in service) have limited patience. Their patience
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time is exponentially distributed with rate γ. As such, the considered queueing model is an M/M/1+M

queue, in accordance with Kendall’s notation.

For this queueing system, we consider a wide set of congestion related performance measures, which

may evaluate the service quality offered to customers. This includes the expected waiting time, the rate of

abandonment, or the moment generating function of the number of customers in the queue. To capture the

diversity of service quality measures, we introduce a cost function fS(N) that depends on the stationary

random variables N and S, corresponding to the number of customers waiting in the queue and the status

–idle (S = I) or busy (S = B)– of the agent, respectively. The set of values for N and S are N0 and

{I,B}, respectively. In Table 1, we provide a nonexhaustive list of possible expressions for the expected

value of the cost function fS(N), termed E(fS(N)). It should be noted that cost functions that depend on

Table 1: Expected cost function E(fS(N))

E(fS(N)) Performance measure
E(N) Expected number of customers in the queue
E(Nk) kth moment of N

E
(
N
λ

)
= E(W ) Expected waiting time

E(γN) Expected rate of abandonment
E(etN ) Moment generating function of N at t

E((N − E(N))+) Expected excess in the number of customers in the queue
E(1S=IN) Expected number of customers in the queue when the agent is idling
E(1S=BN) Expected number of customers in the queue when the agent is busy

the agent’s status correspond to visible queues where customers may perceive the wait differently whether

the agent is actively serving them or not. When the function fS(N) does not depend on the status of the

agent, we write f(N) instead of fS(N). We are also concerned with the work condition offered to the agent.

Therefore, we evaluate the proportion of time during which the agent is busy (that is, the occupation rate),

termed pB.

The objective is to obtain a trade-off between the service quality offered to customers and work condition

offered to the agent. To capture this trade-off, we wish to minimize the expected congestion cost function

while having the proportion of time during which the agent is busy below a certain threshold level. The

optimization problem is then expressed as

{
Minimize E(fS(N))

pB ≤ pB,
(1)

where pB is the threshold level for pB, corresponding to the maximal occupation rate of the agent.

To solve Problem 1, we consider the set of non-work-conserving policies. This means that we consider
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policies that allow the agent to remain idle even if a customer is waiting in the queue. Therefore, the

agent controls the proportion of busy time by actively not working when some customers are waiting to

be served. However, we do not allow the agent to interrupt a service and put a customer back into the

queue to become idle once a service has started. Allowing this possibility could enlarge the set of achievable

policies, eventually leading to a better solution for Problem 1, but it may not correspond to service system

applications where service interruptions are not permitted.

4 Characterization of the optimal policy

In this section, we develop a Markov decision process (MDP) approach to determine the optimal idling

policy for Problem 1. The optimization problem corresponds to a constrained MDP. Constrained MDPs

can be solved using various techniques such as linear programming (Altman, 1998), reinforcement learning

(Geibel, 2006) or genetic algorithms (Hirayama and Kawai, 2000). The selection of the appropriate method

depends on the dimensionality of the underlying Markov chain and the aim to either compute or prove the

form of the optimal policy. For this problem, we use the Lagrangian method explained in Altman (1999)

that introduces a Lagrangian multiplier P > 0 to measure the proportion of time during which the agent is

busy. Therefore, the MDP approach will determine the optimal policy to minimize P×pB+E(fS(N)). This

optimization problem is not equivalent to Problem 1. However, the optimal policy for this new optimization

problem has the same monotonic structure as the one for the constrained Problem 1 (e.g., see Chapter 5

in Altman (1999)). Once the monotonic structure of the optimal policy is determined, a performance

evaluation method will be developed in Section 5 to obtain the solution to Problem 1. We now formulate

the problem via the definition of states, transition structure and possible actions.

State definition. We model the system in a Markov theoretic framework. Let (x, y) be a state of the

Markov chain associated with the number of customers in the queue (excluding the one in service) and the

status of the agent. As defined in Section 3, the status of the agent is denoted by either I or B to indicate

that the agent is either idle or busy. Therefore, the state space of the system is N0 × {I,B}.

Transition structure. The transition structure is that of an M/M/1+M queue, except that there is no

automatic routing of one customer in service. This is a decision action as explained below. We denote the

transition rate from state (x, y) to state (x′, y′) by r(x,y),(x′,y′). Then for (x, y), (x′, y′) 6= (x, y) ∈ N0×{I,B},
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we have

r(x,y),(x′,y′) =


λ if (x′, y′) = (x+ 1, y),

µ if y = B and (x′, y′) = (x, I),

xγ if x > 0 and (x′, y′) = (x− 1, y),

0 otherwise.

(2)

Control action. At each instant of time, when (i) at least one customer is in the queue (i.e., x > 0) and

(ii) the agent is idling (i.e., y = I), the agent can take the decision action to remain idle or to initiate a new

service. An idling policy is a function that associates either state (x, I) or state (x − 1, B) to each state

(x, I) with x > 0.

Value function definition. We are considering infinite horizon average costs. It is then optimal to

schedule customers only at transition instants (abandonment instant, service completion time or arrival

time). Specifically, if it is optimal to keep the agent idle at a given time, then the action remains optimal

until the next event in the system. This result follows directly from the continuous-time Bellman equation

(Puterman (1994), Chapter 11). We then choose to discretize our continuous-time model. However, since

we consider an infinite capacity queue, the total event rate is unbounded due to the abandonment rate.

Therefore, we cannot apply the uniformization technique directly. We thus introduce a bound for the

number of customers in the queue, m, such that the total event rate is bounded by λ+µ+mγ. We further

assume that λ+ µ+mγ = 1 such that the transition rates in the continuous time MDP can be viewed as

transition probabilities in the discrete time MDP. In Sections C4 and C5 of Sennott (2009), it is proven that

the average expected cost and optimal policy under the truncated model converges to the average expected

cost and optimal policy of the original model as m tends to infinity. Therefore, by selecting a sufficiently

high value for m, the truncated finite state MDP approximates the real system.

We formulate a two-step value function, in order to separate transitions and actions and simplify the

involved expressions. We define the dynamic programming value functions Vk(x, y) and Wk(x) over k ≥ 0

steps, depending on the state of the system. The operator Wk captures the decision action to either remain

idle or to start the service of a new customer. Therefore,

Wk(x) = min(Vk(x− 1, B), Vk(x, I)) if x > 0, and (3)

Wk(0) = Vk(0, I).

We mention that the operator Wk cannot be used after a λ− or a γ−transition from state y = B as service
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interruption is not permitted.

We next express Vk+1(x, y) in terms of Vk(x, y) in the following way. First, the costs until the next jump

are incurred by the congestion cost function fy(x) defined as in Section 3. Second, a cost P is counted for

each state where the agent is busy, to account for the occupation rate. For 0 ≤ x < m and k ≥ 0, this leads

to

Vk+1(x, I) = fI(x) + λWk(x+ 1) + γxWk(x− 1) + (1− λ− γx)Wk(x), and (4)

Vk+1(x,B) = fB(x) + P + λVk(x+ 1, B) + µWk(x) + γxVk(x− 1, B) + (1− λ− µ− γx)Vk(x,B).

Note that by adding a fictitious transition from a state to itself (i.e., the rates 1−λ−γx and 1−λ−µ−γx),

we allow the rate out of each state to be λ+ µ+mγ = 1, without exception, for each state.

There remains to express Vk+1(x, y) in terms of Vk(x, y) at the boundary state x = m. As mentioned

above, when m is selected sufficiently high, the transitions at the boundary state do not influence the

optimal policy and average cost. Therefore, we could simply express in the definition of Vk(m, y) that, at

the boundary state x = m, a λ−transition does not modify the system state. However, this would break the

monotonicty properties of Vk(x, y) in x of the original model at the boundary state. Instead of neglecting

this aspect (assuming that m is very large), we propose to modify the transitions at the boundary state

in order to keep the monotonicity structure that is hidden in the original model, intact as in Down et al.

(2011); Bhulai et al. (2014). We propose the following relation for x = m and k ≥ 0:

Vk+1(m, I) = fI(m) + λVk(m,B) + γmWk(m− 1) + (1− λ− γm)Wk(m), and (5)

Vk+1(m,B) = fB(m) + P + λ(2Vk(m,B)−Wk(m− 1)) + µWk(m) + γmVk(m− 1, B)

+ (1− λ− µ− γm)Vk(m,B)

Theorem 6.2.3 in Puterman (1994) proves that the optimal infinite horizon policy is independent of the

choice of V0(x, y). We thus simply select V0(x, y) = 0 for 0 ≤ x ≤ m and y = I,B to initiate the definition

of the value function.

For each k > 0 and each state (x, I) for 0 < x ≤ m, there is a minimizing action: serve a customer or

remain idle. The function

(x, I) :→ {Serve, Idle}

is referred to as the agent’s idling policy at iteration k. As k tends to infinity, the difference Vk+1(x, y) −
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Vk(x, y) converges to the optimal long-run average cost, and the optimal action at each state can be found

(Puterman, 1994). Therefore, (4) and (5) can be used to obtain the optimal policy numerically. In addition,

these relations allow us to prove the monotonicity properties of the value function Vk(x, y) that show the

form of the optimal policy.

Main result. The main result of this section is that it is either optimal to idle above or below a threshold

on the queue length. In Lemma 1, we first state necessary relations for Vk(x, y) that induce the result for

the optimal idling policy at iteration k. We aim to prove by induction on k that (6) in Lemma 1 holds for

Vk(x, y) using (4) and (5). In the induction step, we observe that (6) does not simply propagate. Other

relations are required to prove the induction step. These relations define three classes of functions that

include those of Lemma 1. Let C1, C2, and C3 denote these different sets of relations for a function gy(x)

for 0 ≤ x ≤ m and y = I,B. In Table 2, we define these sets by using the symbol when one property

is satisfied in one class of functions. In Theorem 1, under some conditions on the system parameters, we

prove by induction on k that if the congestion cost function fy(x) belongs to Ci, then the properties defining

the set Ci propagates in the induction step from Vk(x, y) to Vk+1(x, y) using (4) and (5) for i = 1, 2, 3. In

particular, this proves that (6) propagates, which in turn proves the form of the optimal idling policy.

Lemma 1. At iteration k ≥ 0, if for 0 < x < m we have

Vk(x+ 1, I) + Vk(x− 1, B)− Vk(x,B)− Vk(x, I) ≥ 0 (≤ 0), (6)

then it is optimal for the agent to idle below (above) a threshold on the number of customers in the queue.

Table 2: Definition of the classes of function C1, C2, and C3 for 0 ≤ x ≤ m and y = I,B

Property Definition C1 C2 C3

Increasing in x gy(x+ 1)− gy(x) ≥ 0
Increasing in y gB(x)− gI(x) ≥ 0

Convexity in x gy(x+ 1) + gy(x− 1)− 2gy(x) ≥ 0
Supermodularity in (x, y) gB(x) + gI(x− 1)− gB(x− 1)− gI(x) ≥ 0
Concavity in x gy(x+ 1) + gy(x− 1)− 2gy(x) ≤ 0
Submodularity in (x, y) gB(x) + gI(x− 1)− gB(x− 1)− gI(x) ≤ 0

Idle below a threshold gI(x+ 1) + gB(x− 1)− gB(x)− gI(x) ≥ 0
Idle above a threshold gI(x+ 1) + gB(x− 1)− gB(x)− gI(x) ≤ 0

Complementary property gI(x+ 1) + gB(x− 2)− gI(x)− gB(x− 1) ≥ 0

Theorem 1. The optimal policy for Problem 1 is determined in the following cases:
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• Policy π1: If µ ≥ γ and fy(x) ∈ C1, there exists a threshold n on the number of customers in the

queue such that, idling is optimal if and only if x ≤ n.

• Policy π2: If γ ≥ µ, λ ≥ 2γ and fy(x) ∈ C2 or µ ≥ γ and fy(x) ∈ C3, then there exists a threshold n

on the number of customers in the queue such that, idling is optimal if and only if x ≥ n.

Remarks. We end this section with some remarks regarding the proof and the form of the optimal

policies.

• Properties of the cost function. To prove Theorem 1, we prove that if the congestion cost function

fy(x) belongs to Ci, then the value function Vk(x, y) also belongs to Ci for i = 1, 2, 3 for k ≥ 0. We

prove the result by showing the propagation in k of the different relations defining the classes Ci for

i = 1, 2, 3. The two first properties in Table 2 indicate that the functions in Ci are increasing in x and

in y for i = 1, 2, 3. This translates the idea that the cost of the system increases with the number of

customers present. The next fourth rows give the second order monotonicity properties (convexity,

concavity, supermodularity and submodularity). Rows 7 and 8 provide the relations that define the

threshold structure of the optimal policy, that is those of Lemma 1. Finally, the last line defines

a complementary property that is required for C2. In the case where gI(x) = gB(x) (i.e., if gy(x)

does not depend on y), then C1 is the set of increasing and convex functions in x, C2 is the set of

linear and increasing functions in x, and C3 is the set of increasing and concave functions in x. These

properties can be related to those presented in Table 1. For instance, C1 (C3) translates performance

measures such as the kth moment of the queue length with k ≥ 1 (0 ≤ k ≤ 1), while C2 captures

linear performance measures such as the expected wait or rate of abandonment.

It is difficult to provide an intuition that could explain in general the form of the optimal policy

from the definition of the congestion cost function. When the function fy(x) does not depend on y,

it is however possible to understand whether it would be advisable to idle below or above a certain

threshold on the queue length. When fy(x) is convex in x, the marginal cost per customer is increasing

in the number of customers in the queue. Therefore, long queues have costlier customers than short

ones. It is then advisable to idle only when the queue size is short. The opposite is true when fy(x)

is concave in x. Short queues have costlier customers than long ones. Therefore, it is advisable to

idle only when the queue size is long.

• Conditions on the system parameters. To show the induction step, we need to add conditions

on the system parameters such as µ ≥ γ for C1 and C3, and γ ≥ µ and λ ≥ 2γ for C2. These conditions
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arise from the induction step in the proof of Theorem 1 and are necessary to show the propagation in

k of the considered properties. When these conditions are not satisfied, we observe that for certain

values of k, Vk(x, y) does not belong to any of the Ci’s. However, as k tends to infinity, we observe that

the desired monotonicity properties hold without conditions on the system parameters. It should be

noted that such conditions on the system parameters are often needed to prove monotonicity results

for queueing systems. For instance, the condition µ ≥ γ in the first and third statement of Theorem 1

was also required in Armony et al. (2009) to prove the convexity of the expected queue length in µ

for an M/M/s+M queue.

5 Performance evaluation

In this section, we determine the stationary performance measures for Policy π1 and Policy π2. We also

consider a reference policy, termed Policy π0. Policy π0 is controlled by a threshold n on the queue size

such that an idle agent starts serving customers only once an arrival occurs if the queue size has reached n,

and a busy agent serves customers until the system becomes empty. In Section 5.1, we determine explicit

expressions of the stationary probabilities that allow computing the performance measures. Next in Section

5.2, we explain how one of the building blocks that is part of the stationary probabilities can be evaluated

numerically. Finally in Section 5.3, we focus on the expected idling time duration.

5.1 Stationary probabilities

In this section, we determine the stationary probabilities for each policy. To explain the dynamics of each

policy, we first describe their transition structure. A state of the system is defined as in the previous section

by the pair (x, y) where x is the number of customers in the queue and y is the status of the agent. We

denote the transition rate from state (x, y) to state (x′, y′) by ri(x,y),(x′,y′) for Policy πi with i = 0, 1, 2. For

Policy π0 with (x, y), (x′, y′) 6= (x, y) ∈ N0 × {I,B}, we have

r0
(x,y),(x′,y′) =



λ if x ≥ 0 and y = B or if 0 ≤ x < n and y = I, with (x′, y′) = (x+ 1, y),

λ if x = n and y = I, with (x′, y′) = (n,B),

µ if x > 0 and y = B, with (x′, y′) = (x− 1, B),

µ if x = 0 and y = B, with (x′, y′) = (0, I),

xγ if x > 0, with (x′, y′) = (x− 1, y),

0 otherwise.
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Policy π1 differs from Policy π0 in the third and fourth transition. Therefore, for (x, y), (x′, y′) 6= (x, y) ∈

N0 × {I,B}, we deduce that

r1
(x,y),(x′,y′) =



λ if x ≥ 0 and y = B or if 0 ≤ x < n and y = I, with (x′, y′) = (x+ 1, y),

λ if x = n and y = I, with (x′, y′) = (n,B),

µ if x > n and y = B, with (x′, y′) = (x− 1, B),

µ if 0 ≤ x ≤ n and y = B, with (x′, y′) = (x, I),

xγ if x > 0, with (x′, y′) = (x− 1, y),

0 otherwise.

Finally, for Policy π2 with (x, y), (x′, y′) 6= (x, y) ∈ N0 × {I,B}, we get

r2
(x,y),(x′,y′) =



λ if x > 0 and y = B or if 0 ≤ x < n and y = I, with (x′, y′) = (x+ 1, y),

λ if x = 0 and y = I, with (x′, y′) = (0, B),

µ if x = 0 and y = B, with (x′, y′) = (0, I),

µ if 0 < x < n and y = B, with (x′, y′) = (x− 1, B),

µ if x ≥ n and y = B, with (x′, y′) = (x, I),

xγ if x > 0 and y = B or if x > n and y = I, with (x′, y′) = (x− 1, y),

nγ if x = n and y = I, with (x′, y′) = (n− 2, B),

0 otherwise.

Figure 1 presents the Markov chain associated with each policy.

For Policy πi, we denote by pix and qix the stationary probabilities of having x customers in the queue

and the agent being idle or busy, respectively, for x ≥ 0 and i = 0, 1, 2. We introduce the notations a = λ
γ

and s = µ
γ . We next provide the balance equations for each policy. For Policy π0, we have

(a+ s+ x)q0
x = aq0

x−1 + (x+ 1 + s)q0
x+1 for 0 ≤ x ≤ n− 1, (7)

ap0
0 = sq0

0 + p0
1, (8)

(a+ x)p0
x = ap0

x−1 + (x+ 1)p0
x+1 for 1 ≤ x ≤ n, (9)

(a+ s+ n)q0
n = aq0

n−1 + (n+ 1 + s)q0
n+1 + ap0

n, and (10)

(a+ s+ x)q0
x = aq0

x−1 + (x+ 1 + s)q0
x+1 for x ≥ n+ 1, (11)
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Figure 1: Markov chains for Policies π0, π1, and π2.

15



with the convention q0
−1 = p0

n+1 = 0. For Policy π1, we instead have

(a+ s+ x)q1
x = aq1

x−1 + (x+ 1)q1
x+1 for 0 ≤ x ≤ n− 1, (12)

(a+ x)p1
x = ap1

x−1 + (x+ 1)p1
x+1 + sq1

x for 0 ≤ x ≤ n, (13)

(a+ s+ n)q1
n = aq1

n−1 + (n+ 1 + s)q1
n+1 + ap1

n, and (14)

(a+ s+ x)q1
x = aq1

x−1 + (x+ 1 + s)q1
x+1 for x ≥ n+ 1, (15)

with the convention p1
n+1 = q1

−1 = p1
−1 = 0. Finally, for Policy π2, we get

ap2
0 = sq2

0, (16)

(a+ s+ x)q2
x = aq2

x−1 + (x+ 1 + s)q2
x+1 for 0 ≤ x ≤ n− 3 and x = n− 1, (17)

(a+ s+ n− 2)q2
n−2 = aq2

n−3 + (n− 1 + s)q2
n−1 + np2

n for x = n− 2, (18)

(a+ s+ x)q2
x = aq2

x−1 + (x+ 1)q2
x+1 for x ≥ n, and (19)

(a+ x)p2
x = ap2

x−1 + (x+ 1)p2
x+1 + sq2

x for x ≥ n, (20)

with the convention q2
−1 = p2

0 and p2
n−1 = 0. We observe that common structures of equations arise for the

different policies. Specifically, we observe that the following set equations is involved for a given probability

wx for x ≥ 0:

(a+ s+ x)wx = awx−1 + (x+ 1)wx+1, (21)

(a+ x)wx = awx−1 + (x+ 1)wx+1, and (22)

(a+ s+ x)wx = awx−1 + (x+ 1 + s)wx+1. (23)

In Lemma 2, we provide the two independent solutions of each equation (21), (22), and (23). These solutions

are next used as building blocks to express the stationary probabilities in Theorem 2.

Lemma 2. The two independent solutions of (21) for x ≥ 0 are Ax and Bx, defined as follows:

Ax =
1

2iπ

∫
ζ1

z−(x+1)eaz(1− z)−sdz =
x∑
k=0

ax−k

k!(x− k)!

Γ(s+ k)

Γ(s)
, and (24)

Bx =
1

2iπ

∫
ζ2

z−(x+1)eaz(z − 1)−sdz, (25)

where the contour ζ1 is defined as a small circle in the z-plane, on which |z| < 1, the contour ζ2 goes from
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−∞ − iε to −∞ + iε for ε > 0, encircling z = 1 in the counterclockwise sense, and Γ(z) is the Gamma

function defined for z > 0 by Γ(z) =

∫ ∞
t=0

tz−1e−tdt.

The two independent solutions of (22) for x ≥ 0 are

Cx =
ax

x!
, and (26)

Dx =
x−1∑
k=0

ax−kk!

x!
. (27)

Finally, the two independent solutions of (23) for x ≥ 0 are given by

Ex =
ax+s

Γ(x+ 1 + s)
, and (28)

Fx =

x∑
k=0

aksΓ(s+ x− k)

Γ(s+ x+ 1)
. (29)

Although Bx can be expressed as a complex integral, it cannot be numerically computed directly. To

solve this issue, Section 5.2 proposes two numerical methods to derive Bx. These methods are built on

the Wronskian of Ax and Bx, defined by Ux = AxBx−1 − BxAx−1 for x ≥ 0. It should be noted that the

definition of Ax and Bx is then extended to x = −1 by computing their values at x = −1. We find that

A−1 = 0 and B−1 =
eaas−1

Γ(s)
from the expressions in Lemma 2. Since

(a+ s+ x)Ax = aAx−1 + (x+ 1)Ax+1, and (a+ s+ x)Bx = aBx−1 + (x+ 1)Bx+1,

by multiplying the first equation by Bx and the second one by Ax and next subtracting the two equations,

we deduce a relation for Ux:

(x+ 1)Ux+1 = aUx for x ≥ 0.

Therefore, we have Ux = ax

x!U0 for x ≥ 0. Since A−1 = 0 and A0 = 1, we have U0 = B−1, which leads to

Ux =
eaax+s−1

x!Γ(s)
for x ≥ 0. (30)

In Theorem 2, we solve the balance equations using the building blocks found with Lemma 2. As for Ax

and Bx, we extend the definition of Ex and Fx to x = −1, with E−1 = as−1

Γ(s) and F−1 = 0. To determine the

stationary probabilities, we also need the asymptotic expressions of Ax and Bx as x grows large as provided
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in Lemma 3. We write ux ∼
x→x0

vx to indicate that lim
x→x0

ux
vx

= 1 for x0 ∈ R.

Lemma 3. The asymptotic expressions of Ax and Bx as x grows large are given by

Ax ∼
x→∞

eaxs−1

Γ(s)
, and Bx ∼

x→∞

ax+s

Γ(x+ 1 + s)
.

Moreover, lim
x→∞

Ax
Bx

=∞.

Theorem 2. For Policy π0, we obtain

q0
0 =

[
n∑
x=0

(
Fx +

s

a

1 +Dn

Cn
Cx −

s

a
Dx

)
+
Fn
En

∞∑
x=n+1

Ex

]−1

, q0
x = q0

0Fx for 0 ≤ x ≤ n,

q0
x = q0

0

ExFn
En

for x ≥ n, and p0
x = q0

0

s

a

(
Cx

1 +Dn

Cn
−Dx

)
for 0 ≤ x ≤ n.

For Policy π1, we get

q1
0 =

[
An+1

Cn+1

n∑
x=0

Cx +
An
En

∞∑
x=n+1

Ex

]−1

, q1
x = q1

0Ax for 0 ≤ x ≤ n, q1
x = q1

0An
Ex
En

for x ≥ n,

and p1
x = q1

0

(
An+1

Cn+1
Cx −Ax

)
for 0 ≤ x ≤ n.

For Policy π2, we have

p2
0 =

[
n−2∑
x=−1

Ex
E−1

+
aEn−2

E−1

a+ s+ n− 1− n Bn
Bn−1

∞∑
x=n−1

Cx
Cn−1

]−1

, q2
x = p2

0

Ex
E−1

for 0 ≤ x ≤ n− 2,

q2
x = p2

0

aEn−2

E−1

a+ s+ n− 1− n Bn
Bn−1

Bx
Bn−1

for x ≥ n− 1,

and p2
x = p2

0

aEn−2

E−1

a+ s+ n− 1− n Bn
Bn−1

(
Cx
Cn−1

− Bx
Bn−1

)
for x ≥ n.

From the stationary probabilities, we deduce the agent’s occupation rate under Policy πi, termed piB, and

the agent’s idling probability, termed piI , as p
i
B =

∞∑
x=0

qix = 1− piI for i = 0, 1, 2. The expected congestion

cost function under Policy πi, termed E(fS(N))i, is computed as E(fS(N))i =
∞∑
x=0

fB(x)qix + fI(x)pix for

i = 0, 1, 2. For Policies π0 and π1, since the building blocks Ax, Cx, Dx, Ex and Fx can be directly

computed, we may estimate the performance measures from the stationary probabilities. For Policy π2, Bx

remains to be computed as explained in Section 5.2. It should be noted that for p2
B, only Bn and Bn−1
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need to be determined. This can be explained from flow conservation, as

λ = µp2
B + γ

∞∑
x=0

x(p2
x + q2

x),

where
∞∑
x=0

x(p2
x + q2

x) only depends on Bn and Bn−1.

5.2 Evaluation of Bx

In this section, we show how Bx can be computed. From (30), we could determine an iterative way

to compute Bx using Bx = AxBx−1−Ux
Ax−1

. However, this cannot be done due to A−1 = 0. Instead, in

Proposition 1, we show how Bx can be computed as a function of B0. Next, using the asymptotic expression

of Bx as x grows large, we estimate the value of B0.

Proposition 1. For x ≥ −1, we have

Bx+1 = Ax+1B0 −
eaas−1

Γ(s)

a

(x+ 1)!

x∑
k=0

akhk,x(s), (31)

where hk,x(s) =
x−k∑
i=0

αi,k,xs
i is a polynomial in s of degree x− k that does not depend on a, with α0,0,0 = 1,

α0,0,1 = α1,0,1 = α0,1,1 = 1, and furthermore

α0,k,x = xα0,k,x−1 + α0,k−1,x−1 − xα0,k−1,x−2, (32)

αi,k,x = αi−1,k,x−1 + xαi,k,x−1 + αi,k−1,x−1 − xαi,k−1,x−2, for 1 ≤ i ≤ x− k − 1,

αx−k,k,x = αx−k−1,k,x−1 + αx−k,k−1,x−1 for x ≥ 2,

with hx,x(s) = 1, h0,x = Γ(s+x+1)
Γ(s+1) for x ≥ 0, and hk,x(s) = (s + x)hk,x−1(s) + hk−1,x−1(s) − xhk−1,x−2(s)

for 1 ≤ k ≤ x− 1 and x ≥ 2.

Using Proposition 1, we approximate the value of B0 and next deduce an approximate value for Bx for

x ≥ 0. Using Proposition 1, we have

B0 =
Bm+1

Am+1
+
eaas−1

Γ(s)

a
(m+1)!

m∑
k=0

akhk,x(s)

Am+1
,
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for m > 0. From Lemma 3 we have lim
m→∞

Bm+1

Am+1
= 0. Therefore, we approximate B0 using

B0 ∼
m→∞

eaas−1

Γ(s)

a
(m+1)!

m∑
k=0

akfk,m(s)

Am+1
,

for a large m. From Proposition 1, we thus obtain an iterative method to compute Bx.

The method in Proposition 1 provides an explicit expression for Bx−AxB0. However, the computation

of the coefficients αi,k,x can be long as we need to select m sufficiently high to obtain a good approximation

for B0. To avoid this difficulty, in Proposition 2, we propose an explicit expression of Bx as a function of

Ay for y ≥ 0. This proposition allows us to derive Bx numerically.

Proposition 2. For x ≥ −1, we have

Bx =
eaas−1

Γ(s)
Ax

∞∑
k=x+1

ak

k!AkAk−1
. (33)

Thus, Proposition 2 determines an explicit way to compute a complex integral that could not be derived

explicitly.

5.3 Idling duration

In this section, we determine the expected duration of the idling period for the agent, termed E(I)i, under

Policy πi for i = 0, 1, 2. To this end, we analyze the Laplace transform of the density function of the first

passage time from a given state (x, I) to state end of the idling period, termed T ix, in the variable t ≥ 0

with Policy πi for i = 0, 1, 2. During an idling period, only arrivals and abandonments from the queue may

occur. With Policies π0 and π1, the agent idles for states where 0 ≤ x ≤ n. The idling period can only be

interrupted after a λ−transition from state (n, I). With Policy π2, the agent idles for states x ≥ n and the

idling period can only be interrupted after an nγ−transition from state (n, I). Therefore, T ix is solution of

T ix(a+ x+ θ) = aT ix+1 + xT ix−1 for 0 ≤ x ≤ n and i = 0, 1, with Tn+1 = 1 and (34)

T 2
x (a+ x+ θ) = aT 2

x+1 + xT 2
x−1 for x ≥ n, with Tn−1 = 1,
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with θ = t
γ . In Proposition 3, we solve (34) and provide the expression of T ix for i = 0, 1, 2 as a function

the confluent hypergeometric functions of the first and second kind (Daalhuis, 2010), defined by

M1(a, b, c) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0
ecuua−1(1− u)b−a−1du, and

M2(a, b, c) =
1

Γ(a)

∫ ∞
0

e−cuua−1(1 + u)b−a−1du, with b ≥ a > 0.

Proposition 3. The solution of (34) is given by

T ix =
M2(θ, x+ θ + 1, a)

M2(θ, n+ θ + 2, a)
for i = 0, 1, and (35)

T 2
x =

x!

(n− 1)!

Γ(n+ θ)

Γ(x+ 1 + θ)

M1(θ, x+ θ + 1, a)

M1(θ, n+ θ, a)
. (36)

We observe that for the three policies, we have lim
θ→0

T ix = 1, which indicates that the idling period ends

with probability 1. We next deduce the expected idling time starting at state x, termed E(Ix)i, through

E(Ix)i = − 1
γ
∂T ix
∂θ |θ=0, for i = 0, 1, 2. For Policies π0 and π1, E(Ix)i can be derived explicitly. We obtain,

after some algebra that

E(Ix)i =
1

λ

n∑
y=x

y∑
k=0

(γ
λ

)k y!

(y − k)!
for 0 ≤ x ≤ n and i = 0, 1. (37)

For Policy π2, we cannot obtain an explicit expression for E(Ix)2. We instead need to compute the derivative

of T 2
x in θ numerically.

We now express E(I)i using E(Ix)i and the stationary probabilities found in Section 5.1. For Policy

π0, the idling period starts from state x = 0 with probability 1. Therefore, the expected idling duration is

E(I0)0. For Policy π1, the idling period starts from state x with probability q1x
n∑
k=0

q1x

with expected duration

E(Ix)1 for 0 ≤ x ≤ n. Finally for Policy π2, either the idling period starts from state (0, I) with an expected

duration of 1
λ and probability q20

q20+
∞∑
x=n

q2x

or it starts from state (x, I) for x ≥ n with probability q2x

q20+
∞∑
x=n

q2x

and

expected duration E(Ix)2. Therefore, the expected duration of the idling period is computed with

E(I)0 = E(I0)0, E(I)1 =

n∑
x=0

q1
xE(Ix)1

n∑
x=0

q1
x

, and E(I)2 =

1
λq

0
0 +

∞∑
x=n

q2
xE(Ix)2

q2
0 +

∞∑
x=n

q2
x

.
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6 Numerical analysis

In this section, we conduct a numerical analysis based on the results of Sections 4 and 5. In Section 6.1,

we show how the optimal threshold n can be computed for each policy and provide examples where either

Policy π1 or Policy π2 is optimal. Next, in Section 6.2, we show how the busy probability, piB, can be

approximated for i = 1, 2 when either the service speed tends to infinity, the arrival rate tends to infinity,

or both the arrival rate and threshold level tend to infinity, leading to a Normal approximation. Finally,

in Section 6.3, we compare the optimal idling policies with a rejection policy, where some customers are

rejected upon arrival to reduce the system’s congestion and increase the agent’s idling probability.

6.1 Policy evaluation

First we explain how the optimal threshold level should be computed, and next we illustrate optimization

problems where either Policy π1 or Policy π2 is optimal. For the numerical experiments, we select µ = 0.5,

λ = 3, and γ = 1. With these parameters, the interval of possible values for the occupation rate is large as

without implementing an idling policy, we find pB = 98.38%, while with n = 0 with Policy π2, or by letting

n tend to infinity with Policies π0 and π1, we obtain pB = 0%.

Computation of the optimal threshold level. To compare Policies π0, π1 and π2, we need to de-

termine the optimal threshold level n to solve Problem 1. The complexity of the stationary probabilities

in Theorem 2 does not allow us to prove the effect of increasing the threshold level n on the occupation

rate and congestion cost function for each policy. Intuitively, by increasing n for Policies π0 and π1 (for

Policy π2), we increase (decrease) the number of states where the agent must idle while some customers

are waiting in the queue. Therefore, the occupation rate should decrease in n for Policies π0 and π1 and

increase in n for Policy π2. This intuition is confirmed by numerical evaluations as illustrated in Figure

2(a). Based on this intuition, Algorithms 1 and 2 provide a simple way to determine the optimal threshold

level, n∗, to solve Problem 1. Since lim
n→∞

piB = 0 for Policy πi for i = 0, 1 and we may find situations where

lim
n→∞

p2
B < pB, Algorithms 1 and 2 may not stop. Therefore, we introduce an upper bound for the search

of n, termed n. It should also be noted that since p2
B = 0 for n = 0, we do not need to specify the value of

p2
B at the first step of Algorithm 2. Finally in the algorithms, the threshold n is assumed to be an integer.

Therefore, at each iteration, the threshold is increased by one. We could instead assume that the threshold

is a positive real and increase the threshold by a quantity that is lower than one at each iteration. This

would provide an improved solution to Problem 1. For the computation of the performance measures, it
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Algorithm 1 Computation of the optimal threshold level n∗ for Policy πi for i = 0, 1

• Step 1: Set n = n∗ = 0 and compute piB and E(fS(N))i. If piB ≤ pB, then set Z = E(fS(N))i and
move to step 2. If piB > pB, then move to step 3.

• Step 2: Increase n by 1 and compute E(fS(N))i.

– If E(fS(N))i < Z, then set n∗ = n and Z = E(fS(N))i and go back to step 2.

– If E(fS(N))i ≥ Z, then go back to step 2 directly.

• Step 3: Increase n by 1 and compute piB and E(fS(N))i.

– If piB ≤ pB, then set Z = E(fS(N))i and move to step 2.

– If piB > pB, then go back to step 3.

• Stopping criterion: n = n.

Algorithm 2 Computation of the optimal threshold level n∗ for Policy π2

• Step 1: Set n = n∗ = 0 and compute E(fS(N))2. Set Z = E(fS(N))2 and move to step 2.

• Step 2: Increase n by 1 and compute p2
B and E(fS(N))2. If p2

B > pB, then stop the algorithm.
Otherwise, if p2

B ≤ pB then

– If E(fS(N))2 < Z, then set n∗ = n and Z = E(fS(N))2, and go back to Step 2.

– If E(fS(N))2 ≥ Z, then go back to step 2 directly.

• Stopping criterion: n = n.
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means that we employ the equivalent continued functions in n for the stationary probabilities (Jagers and

Van Doorn, 1986). In practice, a noninteger value for the threshold n can be obtained by randomizing in

between two adjacent integer threshold policies as explained in Bhulai et al. (2012).

A simplification could be obtained for Algorithms 1 and 2 by assuming that the congestion cost function

is also monotonous in n. We would expect that congestion-related performance measures would have

opposite monotonicity properties in n; that is, they would be increasing in n for Policies π0 and π1 and

decreasing in n for Policy π2. We observe that this is not necessarily the case. For instance, in Figure

2(b), we observe that E(N − 3)+ is decreasing in n for Policy π1 for 0 ≤ n ≤ 3. However, these cases only

occur as exceptions. For E((N − 3)+), we count the number of customers in the queue above 3. It is then

advisable to select n = 3 instead of n < 3. In this way, the agent has the highest chance of being available

when the number of customers in the queue reaches 3. However, for most congestion-related performance

(a) pB (b) E((N − 3)+)

Figure 2: Numerical illustration, effect of n (µ = 0.5, λ = 3, γ = 1)

measures, such as E(N), E(W ) or E(Nk) for k ≥ 0, we observe that the congestion performance measure

evolves in the opposite direction as the occupation rate. Even for counterexamples such as E((N − 3)+) in

Figure 2(b), we observe that the expected monotonicity property in the threshold n holds in most cases.

The intuition is that with an idling policy, decreasing the occupation rate reduces the departure rate of the

system as the agent is not working in some states, which induces more congestion. In the numerous cases

where the monotonicity of the congestion cost function in n can be shown, the solution to Problem 1 can

simply be obtained by increasing n until the constraint on the occupation rate is saturated.

Policy comparison. In Figure 3, we consider two examples of optimization problem, where either the

second moment E(N2), or half moment E(N1/2) of the number of customers in the queue is minimized.

The second (half) moment is a convex (concave) function in the number of customers in the queue that
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illustrates Theorem 1 when the cost function belongs to C1 (C3). The moments E(N2) and E(N1/2) are

monotonous in n for each idling policy. Therefore, as mentioned above, we obtain the optimal threshold

level n∗ by saturating the constraint in Problem 1 (i.e., piB = pB for i = 0, 1, 2). In Figures 3(a) and 3(b),

we provide the optimal value for E(N2) and E(N1/2) as functions of pB (i.e., the solution to Problem 1).

In Figure 3(c), we give the corresponding value of the expected idling time duration. Finally in Figure

3(d), we specify the optimal threshold level for each policy. It should be noted that since n∗ is selected to

saturate the constraint on the occupation rate, for each value of pB, there is a unique optimal threshold

n∗, which is independent of the objective to either minimize E(N2) or E(N1/2). Consequently, for each

value of pB, there is also a unique value of the expected idling time that does not depend on the objective

to either minimize E(N2) or E(N1/2).

(a) minE(N2) (b) minE(N1/2)

(c) Evaluation of E(I) (d) Optimal threshold level n∗

Figure 3: Numerical comparison (µ = 0.5, λ = 3, γ = 1)

As expected from Theorem 1, Policy π1 is optimal for convex performance measures (Figure 3(a)),

while Policy π2 is optimal for concave ones (Figure 3(b)). In addition, Figure 3(c) shows that Policy π0

provides the longest duration of the idling period. This can be interesting if the agent wishes to avoid

having too many switches from idle to busy. The difference between the different policies is the highest for
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intermediate values of pB. When pB is close to 0% or 100%, the agent either always or never idles; therefore,

the idling policy does not impact the system’s performance. We further observe that the congestion-related

performance measure is convex in pB for the optimal policy. This argues in favor of employing an idling

policy, because a reduction of the objective occupation rate from a work-conserving situation will only

result in a small deterioration of the congestion-related performance measure.

6.2 Approximations

In most cases, the congestion-related performance measure is monotonous in n. Therefore, the optimal

threshold level n∗ is determined by the constraint on the occupation rate in Problem 1. To facilitate the

computation of the optimal threshold level n∗ and provide a better understanding of the complex formulas

in Theorem 2, we approximate the occupation rate for different asymptotic cases. In this section, we only

focus on Policies π1 and π2 because only one of these two policies is optimal. We consider a fast-agent

approximation where the service speed tends to infinity, a highly congested system where the arrival rate

tends to infinity, and a system where both a and n tend to infinity with respect to n−a√
a

= β.

6.2.1 Fast-agent approximation

We first consider the asymptotic case where s tends to infinity while a and n are held constant. This case

corresponds to situations where the abandonment and arrival rates are significantly lower than the service

rate. In Proposition 4, we provide the asymptotic expressions of p1
B and p2

B as s tends to infinity. These

asymptotic expressions can be used as approximations of the occupation rate. It should be noted that in

the case where n ≥ 3, we can further approximate p2
B with p2

B ∼
s→∞

a
s .

Proposition 4. For n ≥ 0, the asymptotic expressions of p1
B and p2

B as s tends to infinity are given by

p1
B ∼
s→∞

an+1

sn!

(
n∑
k=0

ax

x!

) and p2
B ∼
s→∞

a
s +

(
a
s

)2
+

a(as )
n−2

a+n−1

1 + a
s +

a
(n−1)!

sn−1

∞∑
x=n−1

ax

x!

a+n−1

. (38)

In Table 3, we show how the fast-agent approximations become close to the exact value of piB as s

increases for i = 1, 2. The relative difference between the approximation and the exact result is computed

as pExact
B −pApproximated

B

pApproximated
B

. As expected, we observe that the quality of the fast-agent approximation improves

with s.
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Table 3: Fast-agent approximation, pB (a = 4, n = 5)
Exact values Approximation Relative difference

s Policy π1 Policy π2 Policy π1 Policy π2 Policy π1 Policy π2

5 13.74% 63.45% 15.92% 70.85% -13.69% -10.44%
10 7.52% 37.89% 7.97% 41.19% -5.59% -8.03%
20 3.91% 19.77% 3.99% 20.29% -1.94% -2.60%
50 1.59% 7.99% 1.60% 8.02% -0.31% -0.46%
100 0.80% 4.00% 0.80% 4.00% -0.13% -0.12%

6.2.2 High-workload approximation

We now consider the case where a tends to infinity and both n and s are held constant. This case corre-

sponds to a congested system where the arrival rate is greater than the service and abandonment rates. In

Proposition 5, we provide the asymptotic expressions of p1
B and p2

B for large a. It should be noted that the

asymptotic expression for p2
B is valid only n ≥ 2 because the terms in Ex can only be neglected if n ≥ 2.

For n = 0, we have p2
B = 0 and for n = 1 we find that lim

a→∞
p2
B = 0. The asymptotic expression of p2

B reveals

that the occupation rate does not necessarily increase in a for Policy π2. The reason is that as a increases,

while n is held constant, the probability to exceed n customers in the queue increases, leading the agent to

idle more.

Proposition 5. The asymptotic expressions of p1
B and p2

B as a tends to infinity are given by

p1
B ∼
a→∞

1−
s
a

1 + eaΓ(n+1+s)
an+s

for n ≥ 0 and p2
B ∼
a→∞

e−a
an

s(n− 2)!
, for n ≥ 2. (39)

In Table 4, we illustrate how the high-workload approximation becomes close to the exact value for

the occupation rate as a increases. As in Table 3, we derive the relative difference between the exact and

approximated results.

Table 4: High-workload approximation, pB (s = 4, n = 5)
Exact values Approximation Relative difference

a Policy π1 Policy π2 Policy π1 Policy π2 Policy π1 Policy π2

8 63.80% 32.33% 94.48% 45.80% -32.47% -29.40%
10 80.96% 15.92% 95.55% 18.92% -15.27% -15.82%
15 97.92% 0.89% 99.16% 0.97% -1.25% -8.55%
30 100.00% 0.00% 100.00% 0.00% 0.00% -0.02%
50 100.00% 0.00% 100.00% 0.00% 0.00% 0.00%
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6.2.3 Normal approximation

We now propose a Normal approximation for the occupation rate. To this end, we assume that s is fixed

and that both n and a tend to infinity with n−a√
a

= β. This approach relates the computation of the optimal

threshold level to a square-root staffing rule (e.g., see Whitt (2007)) and the performance measures to the

asymptotic Halfin-Whitt regime (e.g., see Whitt (1974); Reed (2009); Braverman (2020)). In Proposition 6,

we provide the asymptotic expressions of piB for i = 1, 2. We introduce the cumulative distribution function

(cdf) of a Normal distribution with mean 0 and standard deviation 1, Φ(x) for x ∈ R, and the parabolic

cylinder function of index x and argument y, P cx(y) for x, y ∈ R (Temme, 2010). Recall that P cx(y) can be

computed as P cx(y) = Λ
(
−x− 1

2 , y
)
, where

Λ(t, z) =

√
πe−

z2

4

∞∑
k=0

z2k
k−1∏
i=0

(t+ 1
2

+2i)

(2k)!

2
t
2

+ 1
4 Γ
(

3
4 + t

2

) −

√
πe−

z2

4

∞∑
k=0

z2k+1
k−1∏
i=0

(t+ 3
2

+2i)

(2k+1)!

2
t
2
− 1

4 Γ
(

1
4 + t

2

) ,

for t, z ∈ R.

Proposition 6. The asymptotic expressions of p1
B and p2

B as a and n tend to infinity with n−a√
a

= β are

given by

p1
B ∼
a,n→∞

1− Φ(β) +
Φ′(β)

s

(
β +

P c1−s(−β)

P c−s(−β)

)
and p2

B ∼
a,n→∞

Φ(β).

In Table 5, we evaluate the relative difference between the approximations presented in Proposition 6

and the exact results for p1
B and p2

B for a = 100, a = 1, 600, and a = 3, 600. As the approximations in

Proposition 6 are followed by a term in 1√
a
, the convergence is slow. This is particularly the case for Policy

π1. For this policy, we indicate an improved approximation of p1
B, which involves the term in 1√

a
. This

improved approximation is closer to the exact value of p1
B. It is given by

p1
B ∼
a,n→∞

1− Φ(β) +
Φ′(β)

s

(
β +

P c1−s(−β)

P c−s(−β)

)
+

1√
a

(
Φ(β)− Φ′(β)

s

(
β +

P c1−s(−β)

P c−s(−β)

))(
(1− Φ(β))

(
β(s− 1)−

P c1−s(−β)

P c−s(−β)

)
− sΦ′(β)

)
− Φ′(β)

2
√
a
.

This expression can be deduced from the proof of Proposition 6.

28



Table 5: Normal approximation, pB (s = 3)
Policy π1

Approximation Exact values Relative difference
β a = 100 a = 1, 600 a = 3, 600 a = 100 a = 1, 600 a = 3, 600

-0.5 90.05% 77.67% 83.64% 84.24% -13.75% -7.12% -6.44%
-0.2 78.38% 68.37% 75.36% 76.11% -12.77% -3.86% -2.91%
0 71.22% 61.45% 68.79% 69.60% -13.72% -3.41% -2.27%
0.2 64.99% 54.17% 61.56% 62.40% -16.65% -5.28% -3.98%
0.5 58.60% 43.12% 49.99% 50.81% -26.43% -14.69% -13.30%

Approximation Improved approximation Relative difference
β a = 100 a = 1, 600 a = 3, 600 a = 100 a = 1, 600 a = 3, 600

-0.5 90.05% 81.63% 88.52% 89.06% -4.85% -5.52% -5.41%
-0.2 78.38% 68.71% 76.44% 77.11% -0.49% -1.41% -1.31%
0 71.22% 61.56% 69.19% 69.89% -0.18% -0.57% -0.41%
0.2 64.99% 55.48% 62.93% 63.64% -2.36% -2.17% -1.94%
0.5 58.60% 48.87% 54.00% 53.18% -11.77% -7.42% -4.46%

Policy π2
Approximation Exact values Relative difference

β a = 100 a = 1, 600 a = 3, 600 a = 100 a = 1, 600 a = 3, 600

-0.5 30.85% 32.14% 30.93% 30.85% 4.16% 0.24% 0.00%
-0.2 42.07% 44.91% 42.27% 42.11% 6.74% 0.47% 0.08%
0 50.00% 53.73% 50.13% 50.07% 7.47% 0.25% 0.14%
0.2 57.93% 61.81% 58.19% 58.01% 6.70% 0.46% 0.14%
0.5 69.15% 73.06% 69.37% 69.16% 5.66% 0.33% 0.02%

6.3 Comparison with customer rejection

Another way to preserve the agent’s idling time is to reject some customers upon arrival to avoid having

a too highly congested system. Rejection policies were proven to be optimal for optimization problems

that involve a trade-off between congestion and rate of rejected customers (Koole, 2007; Koçağa and Ward,

2010). Therefore, we are interested in comparing the optimal idling policies of the current paper with

a rejection policy with the aim of solving Problem 1. We consider a rejection policy, termed Policy πr

controlled by a rejection threshold, n, on the number of customers in the queue such that a customer is

rejected upon arrival if the queue size is n. With Policy πr, the performance measures are obtained from

the analysis of the M/M/1+M/n+1 queue.

In Table 6 we provide the solution to Problem 1 for Policy πr and the optimal idling policy for different

values of the objective occupation rate, pB, with the aim of minimizing either E(N2) or E(N1/2) as in

Figure 3. We also compute the relative difference in congestion cost, RD, computed as the difference

between the congestion cost with Policy πi and the one with Policy πr divided by the congestion cost with

Policy πr for i = 1, 2. With Policy πr, the interval of achievable values for pB is more restricted than for the

idling policies (see, Figure 3). In this case with Policy πr, the lowest achievable value for pB is 85.71%. To

make the comparison in Table 6, we only present values of pB where Problem 1 has solutions with Policy πr.
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Table 6: Comparison with customers’ rejection (a = 3, s = 0.5, γ = 1)

E(N2) E(N1/2)
pB Policy π1 Policy πr RD Policy π2 Policy πr RD

85.71% 9.238 0.000 - 1.446 0.000 -
94.74% 9.237 0.632 1362.53% 1.439 0.632 127.80%
97.01% 9.230 2.084 342.93% 1.437 0.969 48.30%
97.81% 9.225 3.950 133.55% 1.436 1.175 22.26%
98.15% 9.223 5.787 59.37% 1.436 1.301 10.42%
98.29% 9.221 7.262 26.98% 1.436 1.373 4.63%
98.35% 9.221 8.246 11.82% 1.436 1.409 1.89%
98.37% 9.221 8.796 4.83% 1.436 1.426 0.70%
98.38% 9.221 9.058 1.80% 1.436 1.433 0.23%

We observe that Policy πr leads to lower values for E(N2) and E(1/2) than idling policies. The reason

is that Policy πr is work-conserving. With Policy π1 or Policy π2, some customers wait in the system while

the agent is not working. This deteriorates the operational performance measures. Moreover, we observe

that E(N2) and E(N1/2) are increasing in pB for Policy πr, while the opposite is true for Policies π1 and

π2. For Policy πr, rejecting customers simultaneously reduces the system’s congestion and the agent’s

occupation rate, while for the idling policies, increasing the idling probability does not reduce the flow of

arriving customers while reducing the system’s departure rate, which consequently increases the system’s

congestion. It should also be mentioned that Policy πr leads to shorter breaks for the agent than idling

policies. Specifically, the expected idling duration is 1
λ with Policy πr, which is lower than the expected

idling durations found in Section 5.3. In practice, the comparison reveals that idling and rejection policies

should be implemented in different contexts. When the objective occupation rate is low, only idling policies

can be implemented as rejection policies cannot reach low occupation rate values. When both policies can

be implemented, rejection policies outperform idling ones but under the cost of rejecting some customers

while idling policies allow all customers to join the service.

7 Conclusion

We studied a single-agent queue with abandonment where the agent has the possibility to idle when cus-

tomers are waiting in the queue. We aimed to determine the optimal policy to minimize congestion-related

performance measures while maintaining the occupation rate of the agent below a certain threshold. To

this end, we defined three classes of function that capture how the congestion cost function could behave

in the number of customers and state of the agent. Using a Markov decision process, we proved, under

some conditions on the system parameters that it is optimal to idle either below or above a threshold on
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the queue length. We next evaluated the performance measures under the two threshold policies and under

a reference policy where the agent only takes breaks when the system is empty. The evaluation involved

complex integrals that we derived numerically. We also determined the Laplace transform of the idling

duration, which we expressed in terms of confluent hypergeometric functions. In addition, we provided

asymptotic expressions of the performance measures for fast-agent and heavy-traffic cases. Our numerical

investigations showed that increasing the idling duration can also be beneficial for operational performance

in some cases. Furthermore, the optimal idling policy provides significant improvement as compared to the

reference policy when the system is highly congested and the desired occupation rate is close to 50%. We

also showed that idling policies should be implemented instead of those involving customer rejection when

the selected idling probability is high.

There are several avenues for future research. Although the discipline of service is first-come first-served,

the expected wait at arrival may be significantly impacted by the selected idling policy. Therefore, it could

be interesting to determine customers’ behavior regarding their joining policy. Moreover, in this study we

assume that service interruption is not permitted. For some applications, it could be possible to interrupt

a service and put a customer back into the queue. This possibility could allow for achieving improved

solutions for the optimization problem studied in this paper. The idling policies studied in this paper are

quantity-based. This means that the idling decision is based on the number of customers present. It could

be useful to compare these policies with delay-based ones where the agent instead makes idling decisions

based on the wait experienced by some customers present in the system. The model definition can be

extended in several directions. To reflect service system applications like in call centers or hospitals, it

could be interesting to investigate the multi-agent case. However, the optimal policy becomes a complex

state-dependent threshold policy that may not allow for determining the system’s performance. Using more

general assumptions for the service time, abandonment time, or arrival process may also be an interesting

model extension to demonstrate the validity of the observations in wider contexts.
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A Table of notation

In Table 7, we recall the notations used throughout the paper.

Table 7: Table of notation
System state description

x Number of customers waiting in the queue with x ∈ N0
y Status of the agent with y ∈ {I,B}

System parameters
λ Customers’ arrival rate
µ Service rate
γ Abandonment rate
a Ratio λ/γ
s Ratio µ/γ

Random variables
N Number of customers waiting in the queue with N ∈ N0
S Status of the agent with S ∈ {I,B}

fS(N) Congestion cost function
Markov decision process

P Lagrange multiplier
m Upper bound for the queue size

fy(x) Congestion cost function at state (x, y)
Vk(x, y) Value function over k steps at state (x, y)
Wk(x) Minimizing operator at state x

Ci for i = 1, 2, 3 Set of functions for fy(x) where the optimal policy can be determined
Policies

n Control parameter of the idling policies
(i.e., threshold on the number of customers in the queue)

n∗ Optimal threshold level of the idling policies
n Upper bound for the search of the optimal threshold level

Policy πi for i = 0, 1, 2 Idling policies
Policy πr Rejection policy

pix for i = 0, 1, 2 Stationary probability to have an idle agent and x customers in the queue
with Policy πi for i = 0, 1, 2

qix for i = 0, 1, 2 Stationary probability to have a busy agent and x customers in the queue
with Policy πi for i = 0, 1, 2

ri(x,y),(x′,y′) for i = 0, 1, 2 Transition rate from state (x, y) to state (x′, y′)

for (x, y), (x′, y′) 6= (x, y) ∈ N0 × {I,B}
Performance measures (the superscript i is used when Policy πi is employed for i = 0, 1, 2)

pB Proportion of time during which the agent is busy (occupation rate)
pB Threshold level for the occupation rate
pI Proportion of idle time for the agent (pI = 1− pB)

E(fS(N)) Expected congestion cost
E(W ) Expected waiting time
Tx Laplace transform in the variable t of the density function of the first

passage time from state (x, I) to the end of the idling period
(we also use the variable θ = t

γ )
E(Ix) Expected duration of the idling period starting at state (x, I)
E(I) Expected duration of the idling period
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B Proof of Lemma 1

Proof. To prove that it is optimal to idle below a certain threshold on the number of customers in the queue,

we need to prove that if it is optimal to serve a customer in state x, then the same decision is optimal in

state x + 1. This implication is translated into if Vk(x, I) ≥ Vk(x − 1, B), then Vk(x + 1, I) ≥ Vk(x,B).

This happens if

Vk(x+ 1, I)− Vk(x,B) ≥ Vk(x, I)− Vk(x− 1, B),

or equivalently,

Vk(x+ 1, I) + Vk(x− 1, B)− Vk(x,B)− Vk(x, I) ≥ 0.

In the same way, if Vk(x, y) is such that

Vk(x+ 1, I) + Vk(x− 1, B)− Vk(x,B)− Vk(x, I) ≤ 0,

then it is optimal to idle above a certain threshold on the number of customers in the queue.

C Proof of Theorem 1

Proof. We prove Theorem 1 by induction on k. In what follows, we recall the monotonicity properties that

need to be proven for Vk(x, y) and explain how the number of relations that need to be proven can be

reduced. Next, we prove the induction step for the first order, second order and threshold properties. Note

that for k = 0, all relations hold as V0(x, y) = 0 for 0 ≤ x ≤ m and y = I,B.

C.1 Recall of the definitions of the properties

Consider a function gy(x) for 0 ≤ x ≤ m and y = I,B.

First order properties: For gy(x) ∈ C1 ∩ C2 ∩ C3, we have

Increasing in x: gy(x+ 1) ≥ gy(x) for 0 ≤ x < m and y = I,B, and (40)

Effect of y: gB(x) ≥ gI(x) for 0 ≤ x ≤ m. (41)
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Second order properties: For gy(x) ∈ C1 ∩ C2, we have

Convexity in (x,B): gB(x+ 1) + gB(x− 1)− 2gB(x) ≥ 0 for 0 < x < m, (42)

Convexity in (x, I): gI(x+ 1) + gI(x− 1)− 2gI(x) ≥ 0 for 0 < x < m, and (43)

Supermodularity: gB(x) + gI(x− 1)− gB(x− 1)− gI(x) ≥ 0 for 0 < x ≤ m. (44)

For gy(x) ∈ C3, we have

Concavity in (x,B): gB(x+ 1) + gB(x− 1)− 2gB(x) ≤ 0 for 0 < x < m, (45)

Concavity in (x, I): gI(x+ 1) + gI(x− 1)− 2gI(x) ≤ 0 for 0 < x < m, and (46)

Submodularity: gB(x) + gI(x− 1)− gB(x− 1)− gI(x) ≤ 0 for 0 < x ≤ m. (47)

Threshold structure: For gy(x) ∈ C1, we have

Idle below a threshold: gI(x+ 1) + gB(x− 1)− gB(x)− gI(x) ≥ 0 for 0 < x < m. (48)

For gy(x) ∈ C2 ∩ C3, we have

Idle above a threshold: gI(x+ 1) + gB(x− 1)− gB(x)− gI(x) ≤ 0 for 0 < x < m. (49)

Complementary property: For gy(x) ∈ C2, we have

gI(x+ 1) + gB(x− 2)− gI(x)− gB(x− 1) ≥ 0 for 1 < x < m. (50)

Some combinations of relations allow us to reduce the number of relations, which need to be proven. For

C1, the sum of (48) and (44) leads to the convexity property of Vk(x, I) (Relation (43)). For C2, the sum

of (49) and (50) leads to the convexity property of Vk(x,B) (Relation (42)); furthermore the sum of (49)

and (50), where x is incremented by 1, leads to the convexity property of Vk(x, I) (Relation (43)). Finally,

the sum of (49) and (42) leads to (44). For C3, the concavity of Vk(x,B) and Vk(x, I) (Relations (45) and

(46)) can be deduced from (47) and (49).
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C.2 Induction step for the first order properties

First, we show the propagation of (40). For 0 ≤ x < m and y = I,B, we have

Vk+1(x+ 1, y)− Vk+1(x, y) = fy(x+ 1)− fy(x) + λ1x<m−1,y=B(Vk(x+ 2, B)− Vk(x+ 1, B))

+ λ1x<m−1,y=I(Wk(x+ 2)−Wk(x+ 1))

+ λ1x=m−1,y=B(Vk(m,B)−Wk(m− 1))

+ λ1x=m−1,y=I(Vk(m,B)−Wk(m))

+ µ1y=B(Wk(x+ 1)−Wk(x))

+ xγ1y=B(Vk(x,B)− Vk(x− 1, B)) + γ1y=BVk(x,B)

+ xγ1y=I(Wk(x)−Wk(x− 1)) + γ1y=IWk(x)

+ (1− λ− µ1y=B − (x+ 1)γ)(1y=B(Vk(x+ 1, B)− Vk(x,B)) + 1y=I(Wk(x+ 1)−Wk(x)))

− γ1y=BVk(x,B)− γ1y=IWk(x).

The terms proportional with λ1x<m−1,y=B (line 1), xγ1y=B (line 6), and 1y=B(1− λ− µ1y=B − (x+ 1)γ)

(line 8) are positive since (40) holds for Vk(x,B). For 0 ≤ x < m, we either have Wk(x+ 1) = Vk(x+ 1, I)

and Wk(x+ 1)−Wk(x) ≥ Vk(x+ 1, I)− Vk(x, I) ≥ 0 or Wk(x+ 1) = Vk(x,B) and Wk(x+ 1)−Wk(x) ≥

Vk(x,B) − Vk(x, I) ≥ 0 due to Relation (41). Therefore, Wk(x + 1) ≥ Wk(x). This proves that the terms

proportional with λ1x<m−1,y=I (line 2), µ1y=B (line 5), xγ1y=I (line 7) and 1y=I(1−λ−µ1y=B−(x+1)γ)

(line 8) are positive. The terms proportional with λ1x=m−1,y=B (line 3) and λ1x=m−1,y=I (line 4) are also

positive since Vk(m,B) −Wk(m − 1) ≥ Vk(m,B) −Wk(m) ≥ Vk(m,B) − Vk(m − 1, B) ≥ 0. Finally, the

remaining terms proportional with γ (lines 6, 7 and 9) sum up to zero. This proves that (40) holds for

Vk+1.

Next, we have for 0 ≤ x ≤ m,

Vkk + 1(x,B)− Vk+1(x, I) = fB(x)− fI(x) + P + λ1x<m(Vk(x+ 1, B)−Wk(x+ 1))

+ λ1x=m(Vk(m,B)−Wk(m− 1))

+ µWk(x) + xγ(Vk(x− 1, B)−Wk(x− 1))

+ (1− µ− xγ)(Vk(x,B)−Wk(x))− µWk(x).

The term proportional with λ1x<m (line 1) is positive since Vk(x+1, B)−Wk(x+1) ≥ Vk(x+1, B)−Vk(x+
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1, I) ≥ 0. With the same approach, we show that the terms proportional with xγ and 1−µ−xγ (lines 3 and

4) are also positive. The term proportional withλ1x=m (line 2) is also positive since Vk(m,B)−Wk(m−1) ≥

Vk(m,B)−Wk(m). Finally, the remaining terms in µ sum up to zero. This proves that (41) holds for Vk+1.

C.3 Induction step for the second order and threshold properties

Second order properties if µ ≥ γ and fy(x) ∈ C1. Assume that (48) holds for Vk. We show that (48)

holds for Vk+1. For 0 < x < m, we have

Vk+1(x+ 1, I) + Vk+1(x− 1, B)− Vk+1(x,B)− Vk+1(x, I) = fI(x+ 1) + fB(x− 1)− fB(x)− fI(x)

+ λ1x<m−1 (Wk(x+ 2) + Vk(x,B)− Vk(x+ 1, B)−Wk(x+ 1))

+ λ1x=m−1 (Vk(m− 1, B)−Wk(m))

+ µ(Wk(x− 1)−Wk(x))

+ (x− 1)γ(Wk(x) + Vk(x− 2, B)− Vk(x− 1, B)−Wk(x− 1))

+ γ(2Wk(x)− Vk(x− 1, B)−Wk(x− 1))

+ (1− λ− µ− (x+ 1)γ)(Wk(x+ 1) + Vk(x− 1, B)− Vk(x,B)−Wk(x))

+ µ(Wk(x+ 1)−Wk(x))

+ γ(2Vk(x− 1, B)− Vk(x,B)−Wk(x)).

Consider the term proportional with λ1x<m−1 (line 2) on the right hand side of this equation. IfWk(x+2) =

Vk(x+ 2, I), then due to Vk(x+ 1, B) +Wk(x+ 1) ≤ Vk(x+ 1, B) + Vk(x+ 1, I), we have

Wk(x+ 2) + Vk(x,B)− Vk(x+ 1, B)−Wk(x+ 1)

≥ Vk(x+ 2, I) + Vk(x,B)− Vk(x+ 1, B)− Vk(x+ 1, I) ≥ 0,

since (48) holds for Vk. If Wk(x+ 2) = Vk(x+ 1, B), then due to Vk(x+ 1, B) +Wk(x+ 1) ≤ Vk(x+ 1, B) +

Vk(x,B), we have

Wk(x+ 2) + Vk(x,B)− Vk(x+ 1, B)−Wk(x+ 1)

≥ Vk(x+ 1, B) + Vk(x,B)− Vk(x+ 1, B)− Vk(x,B) = 0.
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This proves that the term proportional with λ1x<m−1 is positive. With the same approach, we prove that

the term proportional with (x− 1)γ (line 5) and the one proportional with 1−λ−µ− (x+ 1)γ (line 7) are

also positive. The term proportional with λ1x=m−1 (line 3) is positive since Vk(m− 1, B) ≥ Wk(m). The

remaining terms (lines 4, 6, 8 and 9) can be rewritten as

γ(Wk(x+ 1) + Vk(x− 1, B)− Vk(x,B)−Wk(x))

+ (µ− γ)(Wk(x+ 1) +Wk(x− 1)− 2Wk(x)).

The first term proportional with γ is positive as it is the same one as the one proportional with 1 − λ −

µ− (x+ 1)γ (line 7) in the last equation. Consider now the term proportional with µ− γ.

Case 1: Wk(x + 1) + Wk(x − 1) = Vk(x,B) + Vk(x − 2, B). Since 2Wk(x) ≤ 2Vk(x − 1, B), the convexity

of Vk(x,B) in x proves that the term proportional with µ− γ is positive.

Case 2: Wk(x+ 1) +Wk(x− 1) = Vk(x+ 1, I) + Vk(x− 1, I). Since 2Wk(x) ≤ 2Vk(x, I), the convexity of

Vk(x, I) proves that the term proportional with µ− γ is positive.

Case 3: Wk(x+ 1) +Wk(x−1) = Vk(x,B) +Vk(x−1, I). Since 2Wk(x) ≤ Vk(x, I) +Vk(x−1, B), Relation

(44) proves that the term proportional with µ− γ is positive. Note that the case Wk(x+ 1) +Wk(x− 1) =

Vk(x+ 1, I) + Vk(x− 2, B) should not be considered as it is in contradiction with (48).

We now prove that (42) holds for Vk+1. For 0 < x < m, we obtain

Vk+1(x+ 1, B) + Vk+1(x− 1, B)− 2Vk+1(x,B) = fB(x+ 1) + fB(x− 1)− 2fB(x)

+ λ1x<m−1(Vk(x+ 2, B) + Vk(x,B)− 2Vk(x+ 1, B))

+ λ1x=m−1(−Wk(m− 1) + Vk(m− 1, B))

+ µ(Wk(x+ 1) +Wk(x− 1)− 2Wk(x))

+ (x− 1)γ(Vk(x,B) + Vk(x− 2, B)− 2Vk(x− 1, B))

+ 2γ(Vk(x,B)− Vk(x− 1, B))

+ (1− λ− µ− (x+ 1)γ)(Vk(x+ 1, B) + Vk(x− 1, B)− 2Vk(x,B))

+ 2γ(Vk(x− 1, B)− Vk(x,B)).

The terms proportional with λ1x<m−1 (line 2), (x−1)γ (line 5), and 1−λ−µ−(x+1)γ (line 7) are positive

since (42) holds for Vk. The term proportional with µ (line 4) is also positive due to (48), (42) and (44)

as shown for the induction from Vk to Vk+1 for (48). The term proportional with λ1x=m−1 is also positive
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since Vk(x,B) is increasing in x. Specifically, −Wk(m−1)+Vk(m−1, B) ≥ Vk(m−1, B)−Vk(m−2, B) ≥ 0.

Finally, the remaining terms proportional with 2γ (lines 6 and 8) sum up to zero. This proves the induction

step from Vk to Vk+1 for (42).

We consider now (44) and prove the induction step for this relation. For 0 < x ≤ m, we obtain

Vk+1(x,B) + Vk+1(x− 1, I)− Vk+1(x− 1, B)− Vk+1(x, I) = fB(x) + fI(x− 1)− fB(x− 1)− fI(x)

+ λ1x<m(Vk(x+ 1, B) +Wk(x)− Vk(x,B)−Wk(x+ 1))

+ 1x=m(−Wk(m− 1) +Wk(m))

+ µ(Wk(x)−Wk(x− 1))

+ (x− 1)γ(Vk(x− 1, B) +Wk(x− 2)− Vk(x− 2, B)−Wk(x− 1))

+ γ(Vk(x− 1, B)−Wk(x− 1))

+ (1− λ− µ− xγ)(Vk(x,B) +Wk(x− 1)− Vk(x− 1, B)−Wk(x))

+ γ(Wk(x− 1)− Vk(x− 1, B)).

We first consider the term proportional with λ1x<m (line 2).

Case 1: Wk(x) = Vk(x, I). In this case, we have

Vk(x+ 1, B) +Wk(x)− Vk(x,B)−Wk(x+ 1) ≥ Vk(x+ 1, B) + Vk(x, I)− Vk(x,B)− Vk(x+ 1, I) ≥ 0,

since (44) holds for Vk.

Case 2: Wk(x) = Vk(x− 1, B) In this case, we have

Vk(x+ 1, B) +Wk(x)− Vk(x,B)−Wk(x+ 1) ≥ Vk(x+ 1, B) + Vk(x− 1, B)− 2Vk(x,B) ≥ 0,

since (42) holds for Vk. This proves that the term proportional with λ1x<m (line 2) is positive. With the

same approach, we prove that the terms proportional with (x− 1)γ (line 5) and 1− λ− µ− xγ (line 7) are

also positive. The term proportional with λ1x=m (line 3) is positive since Wk(x) is increasing in x. Finally,

the remaining terms proportional with γ (lines 6 and 8) sum up to zero. This proves that (44) holds for

Vk+1.

Second order properties in the case γ ≥ µ, λ ≥ 2γ and fy(x) ∈ C2. In this case, we need to redefine

the artificial terms Vk(m + 1, B) and Vk(m + 1, I) after a λ−transition from state x = m in order to
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satisfy the relations involved in this case. One solution is to modify the λ−terms for x = m in (4) into

the term Wk(m) + Vk(m − 1, B) − Vk(m − 2, B) for a λ−transition from state (m, I) and into the term

Vk(m,B) + Vk(m − 1, B) − Vk(m − 2, B) for a λ−transition from state (m,B). We can check easily that

the first order monotonicity properties (Relations (40) and (41)) hold with this change. Other alternatives

are possible. We do not detail the transitions at the boundary state in what follows.

Consider now the propagation of (49) from Vk to Vk+1. For 0 < x < m, we have

Vk+1(x,B) + Vk+1(x, I)− Vk+1(x+ 1, I)− Vk+1(x− 1, B) = fB(x) + fI(x)− fI(x+ 1)− fB(x− 1)

+ λ (Vk(x+ 1, B) +Wk(x+ 1)−Wk(x+ 2)− Vk(x,B))

+ µ(Wk(x)−Wk(x− 1))

+ (x− 1)γ(Vk(x− 1, B)−Wk(x− 1)−Wk(x)− Vk(x− 2, B))

+ γ(Vk(x− 1, B) +Wk(x− 1)− 2Wk(x))

+ (1− λ− µ− (x+ 1)γ)(Vk(x,B)−Wk(x)−Wk(x+ 1)− Vk(x− 1, B))

+ µ(Wk(x)−Wk(x+ 1))

+ γ(Vk(x,B) +Wk(x)− 2Vk(x− 1, B)).

Consider the term proportional with λ (line 2) on the right hand side of this equation. If Wk(x + 1) =

Vk(x+ 1, I), then due to Vk(x,B) +Wk(x+ 2) ≤ Vk(x,B) + Vk(x+ 2, I), we have

Wk(x+ 1) + Vk(x+ 1, B)− Vk(x,B)−Wk(x+ 2)

≥ Vk(x+ 1, I) + Vk(x+ 1, B)− Vk(x,B)− Vk(x+ 2, I) ≥ 0,

since (49) holds for Vk. IfWk(x+1) = Vk(x,B), then due to Vk(x,B)+Wk(x+2) ≤ Vk(x,B)+Vk(x+1, B),

we have

Wk(x+ 1) + Vk(x+ 1, B)− Vk(x,B)−Wk(x+ 2)

≥ Vk(x,B) + Vk(x+ 1, B)− Vk(x,B)− Vk(x+ 1, B) = 0.

This proves that the term proportional with λ is positive. With the same approach, we prove that the term

proportional with (x − 1)γ (line 4) and the one proportional with 1 − λ − µ − (x + 1)γ (line 6) are also
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positive. The remaining terms (lines 3, 5, 7 and 8) can be rewritten as

µ(Wk(x) + Vk(x,B)−Wk(x+ 1)− Vk(x− 1, B))

+ (γ − µ)(Wk(x− 1) + Vk(x,B)− Vk(x− 1, B)−Wk(x)).

The first term proportional with µ is positive as it is the same one as the one proportional with 1 − λ −

µ− (x+ 1)γ (line 6) in the last equation. Consider now the term proportional with γ − µ.

Case 1: If Wk(x− 1) = Vk(x− 1, I), then

Wk(x− 1) + Vk(x,B)− Vk(x− 1, B)−Wk(x) ≥ Vk(x− 1, I) + Vk(x,B)− Vk(x− 1, B)− Vk(x, I) ≥ 0,

since (44) holds for Vk.

Case 2: If Wk(x− 1) = Vk(x− 2, B), then

Wk(x− 1) + Vk(x,B)− Vk(x− 1, B)−Wk(x) ≥ Vk(x− 2, B) + Vk(x,B)− 2Vk(x− 1, B) ≥ 0,

since (42) holds for Vk. This proves that (49) holds for Vk+1 under the condition γ ≥ µ.

We now consider (50). For 1 < x < m, we get

Vk+1(x+ 1, I) + Vk+1(x− 2, B)− Vk+1(x, I)− Vk+1(x− 1, B) = fI(x+ 1) + fB(x− 2)− fI(x)− fB(x− 1)

+ λ(Wk(x+ 2) + Vk(x− 1, B)−Wk(x+ 1)− Vk(x,B))

+ µ(Wk(x− 2)−Wk(x− 1))

+ (x− 2)γ(Wk(x) + Vk(x− 3, B)−Wk(x− 1)− Vk(x− 2, B))

+ γ(3Wk(x)− 2Wk(x− 1)− Vk(x− 2, B))

+ (1− λ− µ− (x+ 1)γ)(Wk(x+ 1) + Vk(x− 2, B)−Wk(x)− Vk(x− 1, B))

+ µ(Wk(x+ 1)−Wk(x))

+ γ(3Vk(x− 2, B)−Wk(x)− 2Vk(x− 1, B))

Consider the term proportional with λ (line 2) on the right hand side of this equation. If Wk(x + 2) =
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Vk(x+ 2, I), then due to Vk(x,B) +Wk(x+ 1) ≤ Vk(x,B) + Vk(x+ 1, I), we have

Wk(x+ 2) + Vk(x− 1, B)− Vk(x,B)−Wk(x+ 1)

≥ Vk(x+ 2, I) + Vk(x− 1, B)− Vk(x,B)− Vk(x+ 1, I) ≥ 0,

since (50) holds for Vk. If Wk(x + 2) = Vk(x + 1, B), then due to Vk(x,B) + Wk(x + 1) ≤ 2Vk(x,B), we

have

Wk(x+ 2) + Vk(x− 1, B)− Vk(x,B)−Wk(x+ 1) ≥ Vk(x+ 1, B) + Vk(x− 1, B)− 2Vk(x,B) ≥ 0,

since Vk is convex in x. This proves that the term proportional with λ1x<m−1 is positive. With the

same approach, we prove that the term proportional with (x− 2)γ (line 4) and the one proportional with

1− λ− µ− (x+ 1)γ (line 6) are also positive. By summing up the terms proportional with µ (lines 3 and

7), we obtain

Wk(x+ 1) +Wk(x− 2)−Wk(x)−Wk(x− 1).

To prove that this relation is positive, we need to prove that Wk(x) is convex in x. This mans that we need

to prove that

Wk(x+ 1) +Wk(x− 1)− 2Wk(x) ≥ 0.

The casesWk(x+1)+Wk(x−1) = Vk(x+1, I)+Vk(x−1, I) andWk(x+1)+Wk(x−1) = Vk(x,B)+Vk(x−2, B)

can be proven with the convexity property of Vk(x, y) for y = I,B. The case Wk(x + 1) + Wk(x − 1) =

Vk(x+ 1, I) + Vk(x− 2, B) can be proven using Relation (50). Finally, the case Wk(x+ 1) +Wk(x− 1) =

Vk(x,B) + Vk(x − 1, I) should not be considered as it is in contradiction with (49). This proves that

Wk(x + 1) + Wk(x − 2) −Wk(x) −Wk(x − 1) ≥ 0. Consider now the sum of the λ term (line 2) and the

remaining ones in γ (lines 5 and 8). We obtain

(λ− 2γ)(Wk(x+ 2) + Vk(x− 1, B)−Wk(x+ 1)− Vk(x,B))

+ 2γ(Wk(x+ 2) +Wk(x) + Vk(x− 2, B)− Vk(x,B)−Wk(x− 1)−Wk(x+ 1).

The term proportional with λ− 2γ is positive (it is the same one as the one proportional with λ in the last
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equation). We now prove that the term proportional with 2γ is positive.

Case 1: Wk(x+ 2) +Wk(x) = Vk(x+ 2, I) + Vk(x, I). In this case, we have

Wk(x+ 2) +Wk(x) + Vk(x− 2, B)− Vk(x,B)−Wk(x− 1)−Wk(x+ 1)

≥ Vk(x+ 2, I) + Vk(x, I) + Vk(x− 2, B)− Vk(x,B)− Vk(x− 1, I)− Vk(x+ 1, I)

≥ Vk(x+ 1, I) + Vk(x− 2, B)− Vk(x,B)− Vk(x− 1, I) (Convexity of Vk(x, I)),

≥ Vk(x+ 1, I) + Vk(x− 2, B)− Vk(x− 1, B)− Vk(x, I) ≥ 0, (Relation (44))

since (50) holds for Vk.

Case 2: Wk(x+ 2) +Wk(x) = Vk(x+ 1, B) + Vk(x− 1, B). In this case, we have

Wk(x+ 2) +Wk(x) + Vk(x− 2, B)− Vk(x,B)−Wk(x− 1)−Wk(x+ 1)

≥ Vk(x+ 1, B) + Vk(x− 1, B)− 2Vk(x,B) ≥ 0,

since Vk is convex in x.

Case 3: Wk(x+ 2) +Wk(x) = Vk(x+ 2, I) + Vk(x− 1, B). In this case, we have

Wk(x+ 2) +Wk(x) + Vk(x− 2, B)− Vk(x,B)−Wk(x− 1)−Wk(x+ 1)

≥ Vk(x+ 2, I) + Vk(x− 1, B)− Vk(x,B)− Vk(x+ 1, I) ≥ 0,

since (50) holds for Vk. The case Wk(x+ 2) +Wk(x) = Vk(x+ 1, B) + Vk(x, I) should not be considered as

it is in contradiction with (49).
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Second order properties in the case µ ≥ γ and fy(x) ∈ C3. We omit the redefinition of the boundary

transition for this case. We first consider the propagation of (49) from Vk to Vk+1. For 0 < x < m, we have

Vk+1(x,B) + Vk+1(x, I)− Vk+1(x+ 1, I)− Vk+1(x− 1, B) = fB(x) + fI(x)− fI(x+ 1)− fB(x− 1)

+ λ (Vk(x+ 1, B) +Wk(x+ 1)−Wk(x+ 2)− Vk(x,B))

+ µ(Wk(x)−Wk(x− 1))

+ (x− 1)γ(Vk(x− 1, B)−Wk(x− 1)−Wk(x)− Vk(x− 2, B))

+ γ(Vk(x− 1, B) +Wk(x− 1)− 2Wk(x))

+ (1− λ− µ− (x+ 1)γ)(Vk(x,B)−Wk(x)−Wk(x+ 1)− Vk(x− 1, B))

+ µ(Wk(x)−Wk(x+ 1))

+ γ(Vk(x,B) +Wk(x)− 2Vk(x− 1, B)).

With the same approach as in the case where fy(x) ∈ C2, we prove that the term proportional with λ (line

2), (x− 1)γ (line 4) and 1− λ− µ− (x+ 1)γ (line 6) are positive. The remaining terms (lines 3, 5, 7 and

8) can be rewritten as

(µ− γ)(2Wk(x)−Wk(x+ 1)−Wk(x− 1))

+ γ(Vk(x,B) +Wk(x)−Wk(x+ 1)− Vk(x− 1, B)).

Consider the term proportional with µ− γ.

Case 1: Wk(x) = Vk(x, I). SinceWk(x+1)+Wk(x−1) ≤ Vk(x+1, I)+Vk(x−1, I) and Vk(x, I) is concave

in x (Relation (46)), then the term proportional with µ− γ is positive.

Case 2: Wk(x) = Vk(x − 1, B). Since Wk(x + 1) + Wk(x − 1) ≤ Vk(x,B) + Vk(x − 2, B) and Vk(x,B) is

concave in x (Relation (45)), then the term proportional with µ−γ is positive. The term proportional with

γ is also positive for the same reason as those in λ, (x− 1)γ and 1− λ− µ− (x+ 1)γ in the first equation.
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We now consider Relation (47). For 0 < x < m, we have

Vk+1(x, I) + Vk+1(x− 1, B)− Vk+1(x,B)− Vk+1(x− 1, I) = fI(x) + fB(x− 1)− fB(x)− fI(x− 1)

+ λ (Wk(x+ 1) + Vk(x,B)− Vk(x+ 1, B)−Wk(x))

+ µ(Wk(x− 1)−Wk(x))

+ (x− 1)γ(Wk(x− 1) + Vk(x− 2, B)− Vk(x− 1, B)−Wk(x− 2))

+ γ(Wk(x− 1)− Vk(x− 1, B))

+ (1− λ− µ− xγ)(Wk(x) + Vk(x− 1, B)− Vk(x,B)−Wk(x− 1))

+ µ(Wk(x)−Wk(x− 1))

+ γ(Vk(x− 1, B)−Wk(x− 1)).

The right hand side of this equation is positive. Specifically, lines 2, 4, and 6 are positive since (45) and

(47) hold for Vk, Finally, the sum of lines 3, 5, 7 and 8 is zero. This finishes the proof of the theorem.

D Proof of Lemma 2

Proof. Let us start with Equation (21). We need to determine two independent solutions for this equation.

For this purpose, we introduce a function F(z) for z ∈ C and we express wx as

wx =

∫
ζ
z−(x+1)F(z)dz,

where ζ is a contour such that there are no boundary contributions arising in the integral from endpoints

of ζ. This allows us to use the integration by part and show that xwx =

∫
ζ
z−(x+1)zF ′(z)dz. Equation (21)

can then be rewritten as

∫
ζ
z−(x+1)

(
F(z) [(a(1− z) + s)] + F ′(z)(z − 1)

)
dz = 0.

Therefore, F(z) is one solution of the differential equation

F(z) [(a(1− z) + s)] + F ′(z)(z − 1) = 0.
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Consequently, F(z) is proportional with eaz(1 − z)−s. We thus determine two independent solutions of

(21) by selecting two different contours encircling z = 0. We consider the contour ζ1 defined as a small

circle in the z-plane, on which |z| < 1, and ζ2 which goes from −∞− iε to −∞ + iε for ε > 0, encircling

z = 1 in the counterclockwise sense. This provides two independent solutions of (21), Ax and Bx, as

expressed in (24) and (25). Note that for (24) the integrand is analytic inside the unit circle, as we consider

(1 − z)s = |1 − z|seisarg(1−z), with |arg(1 − z)| < π, such that for z ∈ R and z < 1, arg(1 − z) = 0. For

(25), we use the branch (z− 1)s = |z− 1|seisarg(z−1), where |arg(z− 1)| < π, so the integrand is analytic in

C− {Im(z) = 0,Re(z) < 1}.

The expression of Ax in (24) can be obtained explicitly. By expanding (1− z)−s, we obtain (1− z)−s =

1 + sz + s(s+ 1) z
2

2! + · · · . Therefore, we deduce that

Ax =
x∑
k=0

ax−k

k!(x− k)!

Γ(s+ k)

Γ(s)
.

We now consider Equation (22). One known solution of (22) from the analysis of the M/M/s queue is

Cx = ax

x! . We check that a second and independent solution of (22) is Dx =
x−1∑
k=0

ax−kk!
x! . Finally we consider

Equation (23) and check that Ex and Fx are two independent solutions of this equation.

E Proof of Lemma 3

Proof. We consider the asymptotic expressions of Ax and Bx as x tends to infinity. For Ax, we set z = 1− y
x

as Ax is governed by the singularity at z = 1. We thus deduce that

Ax ∼
x→∞

1

2πi

∫
ζ1

eaeyy−sxs−1d y =
eaxs−1

Γ(s)
,

where ζ1 is the change of the contour ζ1 through the change of variable z = 1 − y
x . For Bx, we dilate the

contour ζ2 such that |z| >> 1 and then use |z − 1| ∼ |z|. This leads to

Bx ∼
x→∞

1

2iπ

∫
ζ2

z−(x+1+s)eazdz =
ax+s

Γ(x+ 1 + s)
.

We next write

Am
Bm

∼
m→∞

eams−1Γ(m+ 1 + s)

Γ(s)am+s
∼

m→∞

eam2s−1m!

am+sΓ(s)
∼

m→∞

√
2πea(m+ s)m+s

Γ(s)
.
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This proves that lim
m→∞

Am
Bm

=∞.

F Proof of Theorem 2

Proof. Policy π0. Let us start with Policy π0. We observe that Equations (7) and (11) correspond to (23)

and Equation (9) corresponds to (22).

We first consider (9). From Theorem 2, we can express p0
x as p0

x = c1Cx+ c2Dx for 0 ≤ x ≤ n where the

constants c1 and c2 need to be determined. Using the boundary equations for x = 0 and x = 1, we obtain

p0
0 = c1, and p0

1 = c1a+ c2a.

We then express p0
x in p0

0 and p1
1 as

p0
x = p0

0Cx +
p0

1 − ap0
0

a
Dx for 0 ≤ x ≤ n.

We now relate p0
x with q0

0. Using (8) and sq0
0 = ap0

n, we obtain

p0
0 = q0

0

s

a

1 +Dn

Cn
, and p0

1 = q0
0s

1 +Dn − Cn
Cn

.

We thus deduce that

p0
x = q0

0

s

a

(
Cx(1 +Dn)

Cn
−Dx

)
for 0 ≤ x ≤ n.

Consider now (7). From Theorem 2, we can express q0
x as

q0
x = c3Ex + c4Fx for 0 ≤ x ≤ n.

Using the boundary conditions at x = 0 and x = 1, we deduce that

(s+ a)q0
0 = (s+ 1)q0

1,

q0
0 = c3

as

Γ(s+ 1)
+ c4, and

q0
1 = c3

as+1

Γ(s+ 2)
+ c4

s+ a

s+ 1
.
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By solving this system, we find that c3 = 0 and q0
x = q0

0Fx for 0 ≤ x ≤ n.

We observe that (11) can be simplified into

aq0
x = (x+ 1 + s)q0

x+1, (51)

for x ≥ n. This equation has only one solution that is proportional to Ex = ax+s

Γ(x+1+s) (i.e., one of the

solutions of (23). Therefore, we deduce that q0
x = Ex

En
q0
n = Ex

En
q0

0Fn for x ≥ n.

The stationary probabilities are all expressed as functions of q0
0. Using the normalizing condition, we

deduce the expression of q0
0.

Policy π1. We now consider Policy π1. We observe that Equations (12) corresponds to (21), (13) corre-

sponds to (22), and (15) corresponds to (23).

We first consider (12). After expressing q1
x as a linear combination of Ax and Bx in (12), we find that

the term in Bx is zero since A−1 = 0, A0 = 1, and A1 = a+ s. Therefore, we have

q1
x = q1

0Ax for 0 ≤ x ≤ n.

We now consider (13). Since q1
x = q1

0Ax for 0 ≤ x ≤ n, we write p1
x = c5Ax + c6Cx + c7Dx. By replacing

the expression of p1
x in (13), we obtain

c5 = q1
0

sAx
(a+ x)Ax − aAx−1 − (x+ 1)Ax+1

= −q1
0.

Using the boundary equation for x = 0, we deduce that c6 = p1
0 + q1

0. Also, since p1
n+1 = 0, we get

c7 =
q10An+1−(p10+q10)Cn+1

Dn+1
. Further, using s

n∑
k=0

q1
k = ap1

n, we deduce that

q1
0

(
s

a

n∑
k=0

AkDn+1 +AnDn+1 −An+1Dn − CnDn+1 + Cn+1Dn

)
= p1

0(Dn+1Cn − Cn+1Dn).

We have

CnDn+1 − Cn+1Dn =
an

n!

n∑
k=0

an+1−kk!

(n+ 1)!
− an+1

(n+ 1)!

n−1∑
k=0

an−kk!

n!
=

an+1

(n+ 1)!
= Cn+1.

Moreover, by summing up the equations (s+ a)A0 = A1, (s+ a+ 1)A1 = aA0 + 2A2, ..., (s+ a+ n)An =
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aAn−1 = (n+ 1)An+1, we find that s
n∑
k=0

Ak + aAn = (n+ 1)An+1. Therefore,

s

a

n∑
k=0

AkDn+1 +AnDn+1 =
n+ 1

a
Dn+1An+1.

Moreover, 1 +Dn = n+1
a Dn+1. Thus, we obtain

p1
0 = q1

0

An+1 − Cn+1

Cn+1
.

From this expression, we express p1
x as

p1
x = q1

0

(
−Ax +

An+1

Cn+1
Cx

)
for 0 ≤ x ≤ n.

Finally, (15) is identical to (11), thus we obtain q1
x = Ex

En
q1
n = Ex

En
q1

0Ax for x ≥ n.

The stationary probabilities are all expressed as functions of q1
0. Using the normalizing condition, we

deduce the expression of q1
0.

Policy π2. Equation (17) corresponds to (23), Equation (19) corresponds to (21), and Equation (20)

corresponds to (22).

For (17), we express q2
x as a function of p2

0 for 0 ≤ x ≤ n− 2. We obtain q2
x = p2

0
Ex
E−1

for 0 ≤ x ≤ n− 2.

For (19), we express q2
x as a linear combination of Ax and Bx:

q2
x = c8Ax + c9Bx for x ≥ n− 1.

This leads to

c8 =
q2
n−1Bn − q2

nBn−1

BnAn−1 −AnBn−1
and c9 =

q2
n−1An − q2

nAn−1

−BnAn−1 +AnBn−1
.

Using (30), we deduce that

c8 = −
(
q2
n−1Bn − q2

nBn−1

) n!Γ(s)

eaan+s−1
and c9 =

(
q2
n−1An − q2

nAn−1

) n!Γ(s)

eaan+s−1
.

Assume that we truncate the system at state m − 1 for a large value of m such that lim
m→∞

q2
m = 0.
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Therefore, we get

lim
m→∞

(
Am

q2
n−1Bn − qnBn−1

−Un
+Bm

q2
n−1An − qnAn−1

Un

)
= 0,

which leads to

q2
n = q2

n−1 lim
m→∞

(
AnBm −BnAm

An−1Bm −Bn−1An

)
.

From Lemma 3, we have lim
m→∞

Am
Bm

= ∞. Therefore, we have q2
n = q2

n−1
Bn
Bn−1

, which proves that c8 = 0.

From this analysis, we obtain that

q2
x = q2

n−1

Bx
Bn−1

for x ≥ n− 1.

We now consider (20). Observing now that a(p2
x + q2

x) = (x+ 1)(p2
x+1 + q2

x+1) for x ≥ n, we deduce that

p2
x+q2

x = (p2
n+q2

n)CxCn for x ≥ n. Furthermore, we have aq2
n−1 = n(q2

n+p2
n). This leads to p2

x+q2
x = q2

n−1
Cx
Cn−1

for x ≥ n. Using the expression of q2
x for x ≥ n− 1, we deduce that

p2
x = q2

n−1

(
Cx
Cn−1

− Bx
Bn−1

)
for x ≥ n.

There remains to relate q2
n−1 and p2

0. Using (17) for x = n− 1, we deduce that

ap2
0

En−2

E−1
+ nq2

n−1

Bn
Bn−1

= (a+ s+ n− 1)q2
n−1.

This leads to

q2
n−1 = p2

0

aEn−2

E−1

a+ s+ n− 1− n Bn
Bn−1

.

The stationary probabilities are then all expressed as functions of p2
0. Using the normalizing condition, we

deduce the expression of p2
0.
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G Proof of Proposition 1

Proof. We prove (31) by induction on x. Note that we showed in Theorem 2 that Ax is a solution of the

equation

(a+ s+ x)qx = aqx−1 + (x+ 1)qx+1.

Therefore, the term AxB0 is part of the expression of Bx. Relation (31) is valid for x = −1 as A0 = 1. For

x = 0, we have B1 = (s+ a)B0 − aB−1, so Relation (31) is valid for x = 0, with h0,0(s) = 1.

We now assume that (31) is valid for Bx and Bx+1. We deduce that

Bx+2 =
a+ s+ x+ 1

x+ 2
Bx+1 −

a

x+ 2
Bx

= Ax+2B0 −
aB−1

(x+ 2)!

(
x∑
k=0

zkhk,x(s+ x+ 1) +

x+1∑
k=1

zkhk−1,x − (x+ 1)

x∑
k=1

zkhk−1,x−1

)

= Ax+2B0

− aB−1

(x+ 2)!

(
(s+ x+ 1)h0,x +

x∑
k=1

zk (hk,x(s+ x+ 1) + hk−1,x − (x+ 1)hk−1,x−1) + zx+1hx,x

)
.

We then define hk,x+1(s) by h0,x+1(s) = h0,x(s+x+1), hk,x+1(s) = hk,x(s+x+1)+hk−1,x−(x+1)hk−1,x−1 for

1 ≤ k ≤ x, and hx+1,x+1(s) = hx,x which proves the induction step as the relation h0,x+1(s) = h0,x(s+x+1)

with h0,0(s) = 1 leads to h0,x+1(s) = Γ(s+x+2
Γ(s) and hx+1,x+1(s) = hx,x with h0,0(s) = 1 leads to hx+1,x+1(s) =

1. From the relation on hk,x(s), we deduce Relation (32).

H Proof of Proposition 2

Proof. Consider the equation

(a+ s+ x)qx = aqx−1 + (x+ 1)qx+1.

As explained in the proof of Theorem 2, the solutions of this equation are linear combinations of Ax and Bx.

Instead of Bx, consider another solution of this equation, Bx, such that B−1 = 1 and B0 = 0. With these

values Ax and Bx are independent. Therefore, we have Bx = αAx + βBx. Consider now the Wronskian of

Ax and Bx defined as Ux = AxBx−1 −Ax−1Bx for x ≥ 0. As in the proof of Theorem 2, we can show that
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Ux = U0
ax

x! for x ≥ 0. Since U0 = 1, we deduce that AxBx−1 −Ax−1Bx = ax

x! . We then deduce that

Bx =
AxBx−1 − ax

x!

Ax−1
for x ≥ 1.

We deduce by induction from this expression that

Bx = −Ax
x∑
k=1

ak

k!AkAk−1
for x ≥ 0.

For x = 0, this relation is valid as B0 = 0. For x = 1, we have B1 =
A1B0−a

1

1!
A0

= −a. Thus, the relation is

valid. Assume now that the expression of Bx is valid. We prove that the same relation holds for Bx+1. We

have

Bx+1 =
Ax+1Bx − ax+1

(x+1)!

Ax
= −Ax+1

x∑
k=1

ak

k!AkAk−1
− ax+1

Ax(x+ 1)!

= −Ax+1

x+1∑
k=1

ak

k!AkAk−1
,

which shows the induction step. In the expression of Bx, the coefficient β is found by replacing x by −1.

We thus obtain β = B−1 = eaas−1

Γ(s) . The coefficient α can be expressed as

α =
Bx − βBx

Ax
for x ≥ 0.

We have Bx
Ax
∼ Γ(s)√

2πea(s+x)s+x
as x grows large. Therefore, lim

x→∞
Bx
Ax

= 0. We also have Bx
Ax

= −
x∑
k=1

ak

k!AkAk−1
.

For a large value of k we have Ak ∼ eaks−1

Γ(s) . As the sum
m∑
k=1

(Γ(s))2ak

k!e2aks−1(k−1)s−1 converges as m tends to infinity,

the sum
x∑
k=1

ak

k!AkAk−1
also converges as x tends to infinity. Thus, we obtain

α =
eaas−1

Γ(s)

∞∑
k=1

ak

k!AkAk−1
.

This leads to

Bx =
eaas−1

Γ(s)

(
Ax

∞∑
k=1

ak

k!AkAk−1
−Ax

x∑
k=1

ak

k!AkAk−1

)
=
eaas−1

Γ(s)
Ax

∞∑
k=x+1

ak

k!AkAk−1
,

which allows us to express Bx explicitly.
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I Proof of Proposition 3

Proof. We want to determine two independent solutions for (34). To this end, we introduce ∆x = Tx−Tx−1.

We rewrite Equation (34) by replacing x by x+ 1. We obtain

Tx+1(a+ (x+ 1) + θ) = aTx+2 + (x+ 1)Tx for − 1 ≤ x ≤ n− 1. (52)

The difference between (52) and (34) leads to

(a+ x+ 1 + θ)∆x+1 = a∆x+2 + x∆x for 0 ≤ x ≤ n− 1. (53)

The solutions of (53) can be expressed in terms of confluent hypergeometric functions. We express one

solution of (53) as ∆x =

∫ 1

z=0
G(z)z−(x+1)dz, where lim

z→0
G(z)z−x = lim

z→1
G(z)z−x = 0. Using these boundary

conditions and an integration by parts, we deduce that x∆x =

∫ 1

z=0
G′(z)zz−(x+1)dz. Therefore, (53) can

be rewritten as

∫ 1

z=0
z−(x+1)

[(
(a+ θ)z−1 − az−2

)
G(z) + (1− z)G′(z)

]
dz = 0.

Therefore, G(z) is solution of

G′(z)

G(z)
=

a

z2
− θ

z
− θ

1− z
.

Thus, G(z) is proportional with

G(z) = e−a/zz−θ(1− z)θ.

Hence, one solution of (53) is

∆1
x =

∫ 1

z=0
e−a/z(1− z)θz−(x+1+θ)dz.

By changing the variable y = 1
z , we get

∆1
x =

∫ ∞
y=1

e−ay(y − 1)θyx−1dy.
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Finally, we change the variable y by u = y − 1. We deduce that

∆1
x = ea

∫ ∞
u=0

e−auuθ(u+ 1)x−1du = eaΓ(a)M2(θ + 1, x+ θ + 1, a),

where M2 is the Tricomi confluent hypergeometric function (i.e., the confluent hypergeometric function of

the second kind).

A second solution of (53) can be found by considering the interval (1,∞) instead of (0, 1) and replacing

1− z by z − 1. For x ≥ 2, we obtain

∆2
x =

∫ ∞
z=1

e−a/z(z − 1)θz−(x+1+θ)dz =

∫ 1

y=0
e−ay(1− y)θyx−1dy

=
Γ(x)Γ(1 + θ)

Γ(x+ 1 + θ)
M1(x, x+ 1 + θ,−a) =

Γ(x)Γ(1 + θ)

Γ(x+ 1 + θ)
e−aM1(1 + θ, x+ 1 + θ, a),

where M1 is the confluent hypergeometric function of the first kind. It should be noted that this second

solution is valid only for x ≥ 2. We now use θTx = a∆x − x∆x+1. For Policies π0 and π1, since only ∆1
x

satisfies (53) for x = 0 and Tn+1 = 1, we deduce that

Tx =
M2(θ, x+ θ + 1, a)

M2(θ, n+ θ + 2, a)
=

x∑
k=0

(
x
k

)Γ(k+θ)
Γ(θ)ak

n+1∑
k=0

(
n+1
k

)Γ(k+θ)
Γ(θ)ak

for 0 ≤ x ≤ n+ 1.

For Policy π2, since ∆1
x tends to infinity as x tends to infinity, using Tn−1 = 1, we deduce that

Tx =
x!

(n− 1)!

Γ(n+ θ)

Γ(x+ 1 + θ)

M1(θ, x+ θ + 1, a)

M1(θ, n+ θ, a)
=

∫ 1
0 e

auuθ−1(1− u)xdu∫ 1
0 e

auuθ−1(1− u)n−1du
for x ≥ n− 1.

This finishes the proof of the proposition.

J Proof of Proposition 4

Proof. Policy π1. We start with Policy π1. From Theorem 2, we express p1
B as

p1
B =

n∑
x=0

Ax + An
En

∞∑
x=n+1

Ex

An+1

Cn+1

n∑
x=0

Cx + An
En

∞∑
x=n+1

Ex

.
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From the expression of Ax as a sum in Lemma 2, we deduce that Ax ∼
s→∞

sx

x! . Therefore,
n∑
x=0

Ax ∼
s→∞

An ∼
s→∞

sn

n! . For x > n, we have Ex
En

= ax−nΓ(n+1+s)
Γ(x+1+s) ∼

s→∞

(
a
s

)x−n. Therefore, we deduce that An
En

∞∑
x=n+1

Ex ∼
s→∞

sn

n!
a/s

1−a/s ∼s→∞
asn−1

n! . This proves that the numerator of p1
B is equivalent to sn

n! . At the denominator of p1
B,

the quantities Cx do not depend on s. Therefore, An+1

Cn+1

n∑
x=0

Cx ∼
s→∞

sn+1

(n+1)!
(n+1)!
an+1

n∑
k=0

ax

x! . The denominator of

p1
B is then equivalent to

(
s
a

)n+1
n∑
k=0

ax

x! . This proves the asymptotic expression of p1
B in Proposition 4.

Policy π2. From Theorem 2, we have

p2
B =

n−2∑
x=0

Ex
E−1

+
a
En−2
E−1

a+s+n−1−n Bn
Bn−1

∞∑
x=n−1

Bx
Bn−1

n−2∑
x=−1

Ex
E−1

+
a
En−2
E−1

a+s+n−1−n Bn
Bn−1

∞∑
x=n−1

Cx
Cn−1

.

Using the expression of the Wronskian of Ax and Bx, and the asymptotic expression of Ax, we obtain

Bx ∼
s→∞

s
xBx−1− eaas

Γ(s)x

(
a
s

)x−1 ∼
s→∞

s
xBx−1. Therefore, we deduce that a+ s+n−1−n Bn

Bn−1
∼

s→∞
a+n−1.

Since
∞∑

x=n−1
z−(x+1) = z−(n−1)

z−1 , we have
∞∑

x=n−1
Bx = Bn−2,s+1, where Bn−2,s+1 is equal to Bn−2 by replacing

s by s + 1. Since Bn−2,s+1 ∼
s→∞

Bn−2, we have
∞∑

x=n−1

Bx
Bn−1

∼
s→∞

Bn−2

Bn−1
∼

s→∞
s
a . We also have Ex

E−1
=

ax+1Γ(s)
Γ(x+1+s) ∼s→∞

(
a
s

)x+1. Therefore, the numerator of p2
B is equivalent to a

s +
(
a
s

)2
+

a(as )
n−2

a+n−1 . Since Cx does

not depend on x, the denominator is equivalent with 1 + a
s +

a
(n−1)!

sn−1

∞∑
x=n−1

ax

x!

a+n−1 . This proves the asymptotic

expression of p2
B in Proposition 4.

K Proof of Proposition 5

Proof. Policy π1. We have

1− p1
B =

An+1

Cn+1

n∑
x=0

Cx −
n∑
x=0

Ax

An+1

Cn+1

n∑
x=0

Cx + An
En

∞∑
x=n+1

Ex

.

We start with the numerator. Using
n∑
x=0

z−(x+1) = z−(n+1)−1
1−z , we deduce that

n∑
x=0

Ax = An,s+1 − A−1,s+1 =

An,s+1, where An,s+1 corresponds to the building block An where s is replaced by s+1. Therefore, we have
n∑
x=0

Ax ∼
a→∞

an

n! + an−1(s+1)
(n−1)! . Next,

n∑
x=0

Cx
Cn+1

∼
a→∞

n+1
a + n(n+1)

a2
and An+1 ∼

a→∞
an+1

(n+1)! + ans
n! . We thus deduce

that An+1

Cn+1

n∑
x=0

Cx−
n∑
x=0

Ax ∼
a→∞

an−1s
n! . Consider now the denominator of this expression. We have

∞∑
x=n+1

Ex =
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∞∑
x=n+1

ax+s

Γ(x+1+s) =
∞∑

x=n+1+s

ax

Γ(x+1) ∼
a→∞

ea. Therefore, we deduce that An
En

∞∑
x=n+1

Ex ∼
a→∞

ea Γ(n+1+s)
asn! . Finally,

using An+1

Cn+1

n∑
x=0

Cx ∼
a→∞

an

n! , we deduce the asymptotic expression of p1
B.

Policy π2. Recall that we have

p2
B =

n−2∑
x=0

Ex
E−1

+
a
En−2
E−1

a+s+n−1−n Bn
Bn−1

∞∑
x=n−1

Bx
Bn−1

n−2∑
x=−1

Ex
E−1

+
a
En−2
E−1

a+s+n−1−n Bn
Bn−1

∞∑
x=n−1

Cx
Cn−1

.

Combining Ax ∼
a→∞

ax

x! with the expression of Bx in Proposition 2, we deduce that Bx
Bx−1

∼
a→∞

a
x . Therefore,

a+ s+ n− 1− n Bn
Bn−1

∼
a→∞

s+ n− 1. Using now that
∞∑

x=n−1

Bx
Bn−1

=
Bn−2,s+1

Bn−1
leads to

aEn−2

E−1

a+ s+ n− 1− n Bn
Bn−1

∞∑
x=n−1

Bx
Bn−1

∼
a→∞

anΓ(s)(n− 1)

s(s+ n− 1)Γ(s+ n− 1)
.

With the same asymptotic result as for p1
B, we obtain

aEn−2

E−1

a+ s+ n− 1− n Bn
Bn−1

∞∑
x=n−1

Cx
Cn−1

∼
a→∞

ea
(n− 1)!Γ(s)

Γ(n− 1 + s)(s+ n− 1)
.

From these expressions, we deduce that in the case where n ≥ 2, the terms
n−2∑
x=0

Ex
E−1

and
n−2∑
x=−1

Ex
E−1

can be

neglected in the numerator and denominator of p2
B, which leads to the asymptotic expression of p2

B.

L Proof of Proposition 6

Proof. In this proposition, we assume that a and n are related through n−a√
a

= β and we determine asymp-

totic expressions for p1
B and p2

B as a and n tend to infinity.

Policy π1. We express p1
B with

1− p1
B =

e−a
n∑
x=0

ax

x! − e
−a

n∑
x=0

Ax

An+1

an+1

(n+1)!

e−a
n∑
x=0

ax

x! + An
An+1

a1−sΓ(n+1+s)
(n+1)! e−a

∞∑
x=n+2

ax+s−1

Γ(x+s)

.

We have e−a
n∑
x=0

ax

x! = P
(
Xa < n+ 1

2

)
= P

(
Xa−a√

a
≤ β + 1

2
√
a

)
, where Xa is a Poisson distribution with

parameter a. Since Xa converges in distribution to a Normal distribution when a and n tend to infinity,
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we deduce that e−a
n∑
x=0

ax

x! ∼
a,n→∞

Φ(β) + Φ′(β)
2
√
a
, where Φ is the cdf of a Normal distribution with mean 0 and

standard deviation 1.

Consider the random variable Ya defined for x ≥ 0 by

P (Ya = x) =

axΓ(s)
Γ(s+x)

1 + eaa1−sγ(s, a)
for x ≥ 0,

where γ(s, a) is the incomplete gamma function defined as γ(s, a) =

∫ a

0
e−tts−1dt. We have

γ(s, a) = ase−a
∞∑
k=0

akΓ(s)

Γ(s+ k + 1)
= as−1e−a

∞∑
k=1

akΓ(s)

Γ(s+ k)
= as−1e−a

( ∞∑
k=0

akΓ(s)

Γ(s+ k)
− 1

)
.

This proves that
∞∑
x=0

P (Ya = x) = 1. Note that for s = 1, Ya has a Poisson distribution with parameter a.

Since γ(s, a) ∼
a→∞

Γ(s) and as−1ea tends to infinity as a tends to infinity, we find an asymptotic distribution

for Ya given by

P (Ya = x) ∼
a,n→∞

e−a
ax+s−1

Γ(s+ x)
for x ≥ 0,

as in the denominator of 1− p1
B. Therefore, we have

P (Ya ≥ n+ 2) ∼
a,n→∞

e−a
∞∑

x=n+2

ax+s−1

Γ(s+ x)

∼
a,n→∞

P

(
Xa > n+ s+

1

2

)
∼

a,n→∞
1− Φ

(
β +

s+ 1/2√
a

)
∼

a,n→∞
1− Φ(β)− Φ′(β)

s+ 1/2√
a

.

This proves that e−a
∞∑

x=n+2

ax+s−1

Γ(x+s) ∼
a,n→∞

1− Φ
(
β + s+1/2√

a

)
.

Using Stirling’s formula, we get

a1−sΓ(n+ 1 + s)

(n+ 1)!
∼

a,n→∞

(
n+ s

n+ 1

)n+1+ 1
2

(n+ s)s−1e−s+1a1−s ∼
a,n→∞

e
β(s−1)√

a ∼
a,n→∞

1 +
β(s− 1)√

a
.

Using Equation (21), we show that

s
n∑
x=0

Ax = (n+ 1)An+1 − aAn.
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Therefore, we obtain

e−a

n∑
x=0

Ax

An+1

an+1

(n+ 1)!
= e−a

an

n!

a

s

(
1− a

n+ 1

An
An+1

)
.

Using again Stirling’s formula leads to

e−a
an

n!
∼

a,n→∞

e−
β2

2

√
2πn

=
Φ′(β)√

n
.

There remains to determine an equivalent expression for the ratio An
An+1

. For this purpose, we change the

variable z in the integral definition of Ax by z = 1− u√
n
. We thus obtain

An ∼
a,n→∞

1

2πi
n
s
2
− 1

2 ea
∫
ζu

u−seβue
u2

2 d u =
n
s
2
− 1

2 ea√
2π

e−
β2

4 P c−s(−β),

where P cx(y) is the parabolic cylinder function of index x and argument y and the approximating contour

ζu is a vertical contour on which Re(u) > 0. Next, we also have

An+1 −An =
1

2iπ

∫
ζ1

z−(n+2)eaz(1− z)1−sdz ∼
a,n→∞

n
s
2
−1ea√
2π

e−
β2

4 P c1−s(−β).

This leads to

An
An+1

∼
a,n→∞

1−
P c1−s(−β)
√
nP c−s(−β)

.

We thus deduce the approximated expressions of p1
B.

Policy π2. Using flow conservation, we have a =
∞∑
x=1

x(p2
x + q2

x) + sp2
B. Therefore, we express p2

B as

p2
B =

a

s
− 1

s

e−a
n−2∑
x=−1

xax+s

Γ(x+1+s)
a−sΓ(n+s)

(n−1)! + n−1+s
a+s+n−1−n Bn

Bn−1

∞∑
x=n−1

xax

x! e
−a

e−a
n−2∑
x=−1

ax+s

Γ(x+1+s)
a−sΓ(n+s)

(n−1)! + n−1+s
a+s+n−1−n Bn

Bn−1

∞∑
x=n−1

ax

x! e
−a

Using Stirling’s formula, we have

a−sΓ(n+ s)

(n− 1)!
∼

a,n→∞
1 + s

β√
a

+
(s− 1)(β2(s+ 1) + s)

2a
.
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Next,

e−a
n−2∑
x=−1

ax+s

Γ(x+ 1 + s)
∼

a,n→∞
P

(
s− 3

2
< Xa < s+ n− 3

2

)
∼

a,n→∞
Φ(β) +

s− 3
2√
a

Φ′(β) +

(
s− 3

2

)2
a

Φ′′(β)

2
.

Next, using x = x+ s− s, we find that

e−a
n−2∑
x=1

xax+s

Γ(x+ 1 + s)
= e−aa

n−3∑
x=0

ax+s

Γ(x+ 1 + s)
− se−a

n−2∑
x=1

ax+s

Γ(x+ 1 + s)

∼
a,n→∞

aP

(
s− 1

2
< Xa < s+ n− 5

2

)
− sP

(
s− 3

2
< Xa < s+ n− 3

2

)
∼

a,n→∞
a

(
Φ(β) +

s− 5
2√
a

Φ′(β) +

(
s− 5

2

)2
a

Φ′′(β)

2

)
− s

(
Φ(β) +

s− 3
2√
a

Φ′(β) +

(
s− 3

2

)2
a

Φ′′(β)

2

)
.

We also have

∞∑
x=n−1

e−a
ax

x!
= 1− P

(
Xa < n− 3

2

)
∼

a,n→∞
1− Φ(β) +

3

2
√
a

Φ′(β)− 9

8a
Φ′′(β),

and

∞∑
x=n−1

xe−a
ax

x!
= a

∞∑
x=n−2

e−a
ax

x!
= a

(
1− P

(
Xa < n− 5

2

))
∼

a,n→∞
a

(
1− Φ(β) +

5

2
√
a

Φ′(β)− 25

8a
Φ′′(β)

)
.

From Lemma 3, we deduce that Bn
Bn−1

∼
a,n→∞

a
n+s . Therefore, we have

n− 1 + s

a+ s+ n− 1− n Bn
Bn−1

∼
a,n→∞

1.

Using the above results, we find that

p2
B ∼
a,n→∞

Φ(β) + βΦ′(β) + Φ′′(β).

Finally, the relation Φ′′(β) = −βΦ′(β) leads to the result.
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