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Abstract

This study aims to determine the transient behavior of the blended queue. Priority customers arrive

over time and benefit from a threshold reservation policy, while non-priority ones can be contacted at

any time. We show how to compute the Laplace transforms of the transient probabilities. Using the

uniformization technique, we prove some monotonicty properties of the expected number of customers in

the queue, explaining why the optimal transient reservation threshold should be lower than the stationary

one.
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1 Introduction

For reasons of stability, service capacity should be greater than demand in service systems modeled by

queues. Furthermore, difficulty making accurate forecasts may incentivize decision-makers to over-staff

their services to achieve a high quality of service. One consequence is an agent’s utilization being too low,

leading to long period of idle time. One way to reduce idle capacity is to allow agents to initiate services by

contacting customers. This combination of inbound and outbound customer service provided by a single

group of agents is referred to as the blended queue and is often used to model call centers with inbound and

outbound callers.

The implementation of blended operations comes with operational challenges. Since the number of

customers to be contacted can be considerable, agents may be continually occupied, either serving inbound

customers or contacting outbound ones. In such conditions, when agents can initiate outbound services,

a high degradation of service level for inbound customers will be observed. Initiating outbound services

should therefore be restricted. One routing solution proposed in the queueing literature for this type of

problem is the employment of a threshold reservation policy [1, 4], whereby a certain number of agents,

denoting the reservation level, are not allowed to initiate outbound services.

Various studies have considered the blended queue under a threshold reservation policy to provide

practical insights for the selection of an optimal threshold level. Unlike the previous contributions, we



analyze the blended queue in transient regime. The transient analysis is motivated by the frequency of

changes to the reservation threshold in call centers. [11] explained that the threshold level is reevaluated

every 15 minutes by an automatic call distributor at a call center, while the stationary regime is achieved

within half-hourly or hourly intervals with constant parameters [5, 3]. This means that stationary results

fail to capture the real evolution of the system state and may not allow optimal decisions to be taken for

the selection of the reservation threshold. In particular, the initial state of the system should be considered

to determine the optimal threshold level for a finite time interval. As for stationary studies, we focus

on the optimization problem, which consists of maximizing the rate of served outbound customers, while

maintaining congestion in the queue below a threshold. We measure the congestion by the expected number

of inbound customers waiting in the queue.

First, we determine the Laplace transforms of the transient probabilities in the case with equal service

rates between inbound and outbound customers and when there is no reservation. We express the transient

probabilities in terms of complex integrals and show how these integrals can be computed. The case with

no reservation can serve as a basis for computing the Laplace transforms of the transient probabilities in

the general case, provided that a finite number of equations remains to be solved. The complexity of the

Laplace transforms precludes their use for purposes other than numerical computations.

To overcome this limitation, we consider a truncated approximation of the system and employ a uni-

formization technique to compute the transient probabilities in the equivalent discrete time Markov chain.

Using this technique, we prove by iteration on the elapse of time that the expected number of customers in

the queue is increasing with the arrival rate and the initial number of customers present and is decreasing

and convex in the reservation threshold. These results support our numerical investigations revealing that

in many cases, even when the initial number of customers present is above the manager’s objective, it is

advisable to select a reservation threshold that is lower than or equal to the stationary reservation threshold.

This means that stationary results lead to decisions being taken that are too safe for the service quality of

inbound customers while under-using the service capacity.

2 Literature review

There is a large body of literature on the blended queue, primarily for applications in call centers. The

first formal proof that a threshold-type reservation policy is optimal for maximizing the rate of served

outbound customers with a service level constraint on the inbound customers’ waiting time was by [4]

and [1]. Later, [2], showed the value of this policy in a more general setting with a piecewise-constant
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doubly-stochastic arrival rate. With unequal service rates, the optimal policy is also of a threshold type,

but the optimal threshold level should be state-dependent. This result was proven in [9] in a system

wherein inbound customers would balk if they had to wait. However, the complexity of the state-dependent

threshold policy and close proximity in performance between a state-dependent and fixed threshold policy

have led most studies to restrict their investigation to the fixed threshold policy. This was the case for

[14], who investigated a large call blending model and proposed a logarithmic safety staffing rule combined

with a threshold reservation policy that would simultaneously manage having agents’ utilization close to

one, with idle agents almost always present. Extensions of the blended queue model with reservation have

been investigated with retrials [15], reservation for arriving customers, where delayed ones are viewed as

outbound ones [8], or in combination with outsourcing decisions in a sales environment [12]. In the above

references, the analyses are made in the stationary regime. We should also mention the paper of [11],

who considered transient experiments through simulations. They showed empirically that changes in the

reservation threshold should be made more slowly than the stationary results suggest from the evolution of

the arrival rate. This paper aims to further investigate this question and provide structural results on the

effect of the reservation threshold on the expected queue length in the transient regime.

3 Model description

We consider a blended queue in the transient regime with a single pool of s homogeneous agents and two

types of customer, referred to as class-1 and class-2 customers. Class-1 customers arrive in the system

according to a Poisson process with rate λ. If class-1 customers are not routed to the service immediately

upon arrival, then they will wait in an infinite capacity queue for their turn to be served, with customers

being served in order of arrival. Unlike class-1 customers, we assume that there is an infinite supply of

class-2 customers, so an available agent can always initiate service with them. The service times of all

class-i customers are assumed to be exponential random variables with rate µi for i = 1, 2.

The routing of customers to service is controlled by a priority-reservation threshold policy with reser-

vation parameter c for c = 0, 1, · · · s. The priority is provided to class-1 customers, which means that

agents serve class-1 customers in priority until their queue is empty. Furthermore, class-1 customers benefit

from reservation that determines an agent’s decision at service completion time when the queue is empty.

Specifically, if the number of idle agents (excluding the idle agent considered) is at least c, then this agent

initiates the service of a class-2 customer. Otherwise, this agent remains idle. In other words, there are c

agents that are reserved for class-1 customers, thus there are at least s− c agents working at any time. We
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consider the optimization problem that consists of maximizing the rate of served class-2 customers while

maintaining the expected number of class-1 customers in the queue below a threshold. In the stationary

case, due to Little’s Law [13], this is equivalent to a constraint on the expected waiting time.

In the transient case, we distinguish between a performance measure observed at time t and its average

value on an interval of length t∗ given an initial condition. In practice, both can be interesting to study.

The former indicates the state of the system to determine the distance with the stationary system, while

the latter informs the experimented performance of past customers. We consider a finite interval of time

I = [0, t∗] and denote by E(Q)t and E(N2)t the expected number of customers in the queue and number

of agents serving class-2 customers at time t for 0 ≤ t ≤ t∗. The expected rate of served class-2 customers

is estimated at time t as E(T )t = µ2E(N2)t. It should be noted that although E(Q)t and E(N2)t can be

determined by the transient probabilities, E(T )t is only an estimation of the potential rate of served class-2

from a situation whereby E(N2)t are serving class-2 customers. The average values of E(Q)t and E(T )t

are given by E(Q)I =
1

t∗

∫ t=t∗

t=0
E(Q)tdt and E(T )I =

µ2

t∗

∫ t=t∗

t=0
E(N2)tdt, respectively.

A state of the system in the blended queue is defined by the couple (x, y), where x is the number of

customers (class-1 + class-2) present in the system and y is the number of class-2 customers present in

service, with 0 ≤ y ≤ s− c ≤ x. We assume that at the beginning of the interval (i.e., at t = 0), the system

is in state (x0, y0), and denote by ptx,y the transient probability to be in state (x, y) at time t ≥ 0. The
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evolution of the system state is governed by the following set of equations:

∂pts−c,s−c
∂t

= −λpts−c,s−c + µ1p
t
s−c+1,s−c + µ1p

t
s−c,s−c−1, (1)

∂pts−c+x,s−c
∂t

= −(λ+ xµ1 + (s− c)µ2)pts−c+x,s−c + λpts−c+x−1,s−c + (x+ 1)µ1p
t
s−c+x+1,s−c

for 1 ≤ x ≤ c− 1,

∂pts+x,s−c
∂t

= −(λ+ cµ1 + (s− c)µ2)pts+x,s−c + λpts+x−1,s−c + cµ1p
t
s+x+1,s−c for x ≥ 0,

∂pts−c,y
∂t

= −(λ+ (s− c− y)µ1)pts−c,y + µ1(s− c+ 1− y)pts−c+1,y + (s− c− (y − 1))µ1p
t
s−c,y−1

+ (y + 1)µ2p
t
s−c+1,y+1 for 1 ≤ y ≤ s− c− 1,

∂pts−c+x,y
∂t

= −(λ+ (s− c+ x− y)µ1 + yµ2)pts−c+x,y + λpts−c+x−1,y

+ (s− c+ x+ 1− y)µ1p
t
s−c+x+1,y + (y + 1)µ2p

t
s−c+x+1,y+1 for 1 ≤ x ≤ c− 1, 0 ≤ y ≤ s− c− 1,

∂pts+x,y
∂t

= −(λ+ (s− y)µ1 + yµ2)pts+x,y + λpts+x−1,y + (s− y)µ1p
t
s+x+1,y

+ (y + 1)µ2p
t
s+x+1,y+1 for x ≥ 0, 0 ≤ y ≤ s− c− 1, and

∂pts−c,0
∂t

= −(λ+ (s− c)µ1)pts−c,0 + µ1(s− c+ 1)pts−c+1,0 + µ2p
t
s−c+1,1.

These equations are complex to analyze and do not lead to simple solutions due to the two-dimensional

problem. In the particular cases where µ1 = µ2 or when c = 0, we develop a method to obtain the Laplace

transforms of the transient probabilities in Section 4. Having Laplace transforms is interesting as it allows

one particular transient probability to be determined without knowing the complete distribution of the

system state. However, the involved expressions cannot be inverted explicitly. In Section 5, we instead

focus on the equivalent discrete time formulation of Equation (1) in a truncated system. This in turn

allows for a better understanding of the impact of the system parameters.

4 Laplace transforms of the transient probabilities

In this section, we determine the Laplace transforms (LT) of the transient probabilities for particular cases

of the blended queue. We introduce the LT of ptx,y, qθx,y, defined by qθx,y =

∫ ∞
t=0

e−θtptx,ydt. Since the LT of

∂ptx,y
∂t is θqθx,y − p0

x,y, the set of equations governing the evolution of the system state can be transformed

into a linear system. However, this set of equations is complex and can be solved only through a numerical

procedure. We focus here on two special cases where qθx,y can be determined. First, we consider the case
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with equal service rates between class-1 and class-2 customers, µ1 = µ2 = µ, and next we consider the

case without reservation, c = 0. Other cases could be considered. For instance, the case c = s (i.e., full

reservation) corresponds to an M/M/s queue because class-2 customers are not served.

In the general case, the analysis for c = 0 can be employed to express the LT of the transient probabilities

when all agents are busy. However, a finite set of equations remains to be solved, corresponding to situations

where at least one agent is idling and the queue is empty. With the approach developed for the case µ1 = µ2

when at least one agent is idling, we can generate functions, close to Ax(θ) and Bx(θ) (see Equations (4)

and (5)), such that the LT of the transient probabilities are expressed as a linear combination of these

functions. There remains to determine the coefficients of this linear combination. This could be done using

the equations that qθx,y satisfy. However, this does not lead to simple relations, nor explicit solutions. The

complexity can already be seen in the computation of the coefficients ck,k for k = 0, 1, · · · , s in the proof of

Proposition 2 in the appendix for the simpler case c = 0.

Analysis with equal service rates. We analyze the case µ = µ1 = µ2, where we do not need to

distinguish between class-1 and class-2 customers in service. Therefore, the Markov chain representing the

evolution of the system state becomes one-dimensional, as y does not need to be specified. We then omit

the index y in qθx,y such that qθx expresses the LT of the transient probability of having x customers in the

system. We determine qθx by solving the following set of equations:

− (λ+ θ + xµ)qθx + λqθx−1 + (x+ 1)µqθx+1 = −δx,x0 for s− c ≤ x ≤ s− 1 and (2)

− (λ+ θ + sµ)qθx + λqθx−1 + sµqθx+1 = −δx,x0 for x ≥ s, (3)

with qθs−c−1 = 0 and where the system is at state x0 at time t = 0 and δx,x0 is the Kronecker symbol defined

by δx,x0 = 1 if x = x0 and δx,x0 = 0 if x 6= x0. We express the solutions of (2) and (3) in Proposition 1 in

terms of za, zb, and Wm,n, where

za =
λ+ θ + sµ−

√
(λ+ θ + sµ)2 − 4λsµ

2sµ
, zb =

λ+ θ + sµ+
√

(λ+ θ + sµ)2 − 4λsµ

2sµ
, and
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Wm,n = Am(θ)Bn−1(θ)−Am−1(θ)Bn(θ), with

Ax(θ) =
1

2iπ

∫
C1

z−(x+1)e
λ
µ
z
(1− z)−θ/µdz, and (4)

Bx(θ) =
1

2iπ

∫
C2

z−(x+1)e
λ
µ
z
(z − 1)−θ/µdz, (5)

where the contour C1 is defined as a small circle in the z-plane on which |z| < 1 and C2 is a contour which

goes from −∞− iε to −∞+ iε for ε > 0, encircling z = 1 in the counterclockwise sense.

Proposition 1. The solutions of (2) and (3) are given by

qθx =
Wx,s−c−1(Wx0,s−1 −Wx0,sz

−1
a )

λ

(
λ
µ

)x0
x0!

eλ/µ
(
λ
µ

)θ−1

Γ(θ)

(
z−1
a Ws,s−c−1 −Ws−1,s−c−1

) for s− c ≤ x ≤ x0,

qθx =
Wx0,s−c−1(Wx,s−1 −Wx,sz

−1
a )

λ

(
λ
µ

)x0
x0!

eλ/µ
(
λ
µ

)θ−1

Γ(θ)

(
z−1
a Ws,s−c−1 −Ws−1,s−c−1

) for x0 ≤ x ≤ s, and

qθx =
zx−sa

µ

x0!

s!

(
λ
µ

)s−1−x0
Wx0,s−c−1

z−1
a Ws,s−c−1 −Ws−1,s−c−1

for x ≥ s,

if x0 ≤ s and

qθx =

(
sµ
λza

)x0−s
Wx,s−c−1

sµzbWs,s−c−1 − λWs−1,s−c−1
for s− c ≤ x ≤ s,

qθx =

(
sµ
λza

)x0−s
sµ(zb − za)

zx−sb + zx−sa

λ
sµ

Ws−1,s−c−1

Ws,s−c−1
− za

zb − λ
sµ

Ws−1,s−c−1

Ws,s−c−1

 for s ≤ x ≤ x0, and

qθx =

(
sµ
λza

)x0−s
sµ(zb − za)

zx−sa

( zb
za

)x0−s
+

λ
sµ

Ws−1,s−c−1

Ws,s−c−1
− za

zb − λ
sµ

Ws−1,s−c−1

Ws,s−c−1

 for x ≥ x0,

if x0 ≥ s.

The expression of Ax(θ) in (4) can be obtained explicitly. By expanding (1−z)−
θ
µ , we obtain (1−z)−

θ
µ =

1 + θ
µz + θ

µ

(
θ
µ + 1

)
z2

2! + · · · . Therefore, we deduce that

Ax(θ) =

x∑
k=0

(
λ
µ

)x−k
k!(x− k)!

Γ
(
θ
µ + k

)
Γ
(
θ
µ

) ,

where Γ(z) is the Gamma function defined by Γ(z) =

∫ ∞
t=0

tz−1e−tdt. The computation of Bx(θ) is more
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complex. In the online appendix, we explain how this complex integral can be derived.

Analysis without reservation. We now consider the case without reservation when the service rates

are not necessarily equal. It means that whenever a service is completed, a new service starts either with

a class-1 or class-2 customer. In this case, we need to determine the solutions of the following system:

− (λ+ θ + (s− y)µ1 + yµ2)qθx,y + λqθx−1,y + (s− y)µ1q
θ
x+1,y (6)

+ (y + 1)µ2q
θ
x+1,y+1 = −δ(x,y),(x0,y0) for x > s, 0 ≤ y ≤ s and

− (λ+ θ + (s− y)µ1)qθs,y + (s− y)µ1q
θ
s+1,y + (y + 1)µ2q

θ
s+1,y+1 (7)

+ (s− y − 1)µ1q
θ
s,y−1 = −δ(x,y),(x0,y0) for x = s, 0 ≤ y ≤ s,

where δ(x,y),(x0,y0) = 1 if (x, y) = (x0, y0) and δ(x,y),(x0,y0) = 0 if (x, y) 6= (x0, y0), with the convention

qθx,s+1 = 0. In Proposition 2, we express the LT of the transient probabilities, in terms of za,y, zb,y, αk and

βk, where

za,y =
λ+ (s− y)µ1 + yµ2 + θ −

√
(λ+ (s− y)µ1 + yµ2 + θ)2 − 4λµ1(s− y)

2(s− y)µ1
,

zb,y =
λ+ (s− y)µ1 + yµ2 + θ +

√
(λ+ (s− y)µ1 + yµ2 + θ)2 − 4λµ1(s− y)

2(s− y)µ1
,

αk =
µ2za,k

µ1(1− za,k)− µ2
, and βk =

µ2zb,k
µ1(1− zb,k)− µ2

.

Proposition 2. The solutions of (6) and (7) are given by

qθx,y =
s∑

k=y

(
k

y

)
αk−yk ck,kz

x−s
a,k ,

for y0 < y ≤ s or 0 ≤ y ≤ y0 and x > x0 − y0 + y, and

qθx,y =

s∑
k=y,k 6=y0

(
k

y

)
αk−yk ck,kz

x−s
a,k +

(
y0

y

)
αy0−yy0 dy0,y0z

x−s
a,y0 +

(
y0

y

)
βy0−yy0 ey0,y0z

x−s
b,y0

,

for 0 ≤ y ≤ y0 and x ≤ x0 − (y0 − y).

In the expressions of qθx,y in Proposition 2, the coefficients c0,0, c1,1, · · · , cs,s, dy0,y0 and ey0,y0 remain to

be determined. This can be done by the initial condition and the boundary equations at state x = s and

0 ≤ y ≤ s. The details are provided after the proof of Proposition 2 in the appendix.
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5 Discrete time approximation using the uniformization technique

The LT technique presented in Section 4 is interesting because it leads to the derivation of the perfor-

mance measures without computing each transient probability [10]. Furthermore, the case µ1 = µ2 can

be connected to the analysis of the M/M/s queue, as the M/M/s queue is a special case of the blended

queue with c = s. However, the involved expressions in the LT are difficult to analyze and can only be

used for numerical purposes. In this section, we instead use the uniformization technique, which consists

of discretizing the elapse of time using a parameter ε > 0, such that ∂ptx,y
∂t ≈

pt+εx,y−ptx,y
ε . By letting ε tend

to zero, this approximation tends to the exact set of equations governing the evolution of the system state.

This approach is efficient to compute the transient distribution of finite states Markov chain [19, 17, 16, 18].

For numerical experiments, to apply this approach for the blended queue, the number of customers in the

queue needs to be bounded with parameter N . The selection of the parameters ε and N determines the

quality of the approximation.

After uniformization, the system (1) becomes

pt+εs−c,s−c = (1− λε)pts−c,s−c + µ1εp
t
s−c+1,s−c + µ1εp

t
s−c,s−c−1, (8)

pt+εs−c+x,s−c = (1− (λ+ xµ1 + (s− c)µ2)ε)pts−c+x,s−c + λεpts−c+x−1,s−c + (x+ 1)µ1εp
t
s−c+x+1,s−c

for 1 ≤ x ≤ c− 1,

pt+εs+x,s−c = (1− (λ+ cµ1 + (s− c)µ2)ε)pts+x,s−c + λεpts+x−1,s−c + cµ1εp
t
s+x+1,s−c for 0 ≤ x < N,

pt+εs−c,y = (1− (λ+ (s− c− y)µ1)ε)pts−c,y + µ1(s− c+ 1− y)εpts−c+1,y + (s− c− (y − 1))µ1εp
t
s−c,y−1

+ (y + 1)µ2εp
t
s−c+1,y+1 for 1 ≤ y ≤ s− c− 1,

pt+εs−c+x,y = (1− (λ+ (s− c+ x− y)µ1 + yµ2)ε)pts−c+x,y + λεpts−c+x−1,y

+ (s− c+ x+ 1− y)µ1εp
t
s−c+x+1,y + (y + 1)µ2εp

t
s−c+x+1,y+1 for 1 ≤ x ≤ c− 1, 0 ≤ y ≤ s− c− 1,

pt+εs+x,y = (1− (λ+ (s− y)µ1 + yµ2)ε)pts+x,y + λεpts+x−1,y + (s− y)µ1εp
t
s+x+1,y

+ (y + 1)µ2εp
t
s+x+1,y+1 for 0 ≤ x < N, 0 ≤ y ≤ s− c− 1, and

pt+εs−c,0 = (1− (λ+ (s− c)µ1)ε)pts−c,0 + µ1(s− c+ 1)εpts−c+1,0 + µ2εp
t
s−c+1,1.

At states x = s+N and 0 ≤ y ≤ s− c, we need to modify the equations as follows:

pt+εs+N,y = (1− ((s− y)µ1 + yµ2)ε)pts+N,y + λεpts+N−1,y for 0 ≤ y ≤ s− c.

9



We estimate E(Q)t =
N∑
x=0

s−c∑
y=0

xpts+x,y and E(T )t = µ2

s+N∑
x=s−c

s−c∑
y=0

yptx,y by selecting ε = t
n for a sufficiently high

value of n. For the average values of these measures on the interval I = [0, t∗], we select ε = t∗

n and obtain

E(Q)I =
ε

t∗

n∑
k=1

N∑
x=0

s−c∑
y=0

xpkεs+x,y, and E(T )I =
µ2ε

t∗

n∑
k=1

s+N∑
x=s−c

s−c∑
y=0

ypkεx,y.

In Section 5.1, we employ this method to investigate the behavior of the transient blended queue and provide

insights on the selection of the optimal threshold level. Next, in Section 5.2, we provide monotonicity results

in the case µ1 = µ2 to support the observations.

5.1 Numerical observations

In Table 1, we provide the average transient performance measures for different values of n during an

interval of time of one time unit of observation and for the stationary case (i.e., t∗ =∞). We present a case

where, initially, 4 agents are idling with x0 = 6 and one where the queue is congested with x0 = 24. In both

cases, 2 agents are initially busy with serving class-2 customers, y0 = 2. We observe the convergence of the

Table 1: Computation of the transient performance measures (µ1 = 3, µ2 = 4, s = 10, c = 6, t∗ = 1, N = 20)

E(T )I E(Q)I
λ n = 100 n = 500 n = 1000 t∗ =∞ n = 100 n = 500 n = 1000 t∗ =∞

0.01 11.627 11.579 11.557 15.992 0.000 0.000 0.000 0.000
(x0, y0) 10 6.095 6.110 6.105 6.959 0.002 0.002 0.002 0.001
= (6, 2) 20 3.312 3.358 3.362 1.752 0.142 0.140 0.140 0.240

25 2.676 2.729 2.735 0.581 0.483 0.478 0.476 1.716
0.01 3.536 3.613 3.614 15.992 3.226 3.338 3.352 0.000

(x0, y0) 10 2.120 2.192 2.200 6.959 5.159 5.259 5.271 0.001
= (24, 2) 20 1.906 1.968 1.975 1.752 8.824 8.875 8.876 0.240

25 1.892 1.953 1.960 0.581 10.990 11.018 11.013 1.716

performance measures as n increases. Since the horizon of observation is short with average performance

measures, the initial condition strongly impacts E(T )I and E(Q)I , which is observed by the high distance

between the transient and stationary results. As for the stationary case, E(T )I decreases and E(Q)I

increases with the arrival rate. Furthermore, the impact of λ depends on the initial condition. When the

system is initially with idle capacity, the sensitivity of E(T )I in λ is high while the sensitivity of E(Q)I in

λ is low. The opposite is true when starting from a congested situation. This suggests that if the system

needs to reset the reservation threshold due to the anticipation of an increase in the arrival rate, the new

reservation threshold should be (not be) highly reduced if the system is observed without (with) idle agents.

In the following, we further investigate this question.

In Figure 1, we present the evolution of E(Q)t and E(Q)t over time for different values of c in a situation
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with 10 agents, identical service rates with µ1 = µ2 = 1, an arrival rate of λ = 9, and either x0 = 20 or

x0 = 10 (i.e., either 10 customers or no customer in the queue). We do not specify the number of class-2

customers in service since it does not impact the evolution of E(Q)t when µ1 = µ2. We want to maintain

the expected number of customers in the queue at below 6.5. The curves are drawn until the objective of

6.5 is reached. For the optimization problem, it is optimal to have c as low as possible, provided that the

expected number of customers in the queue remains below 6.5. In the stationary case, it is optimal to have

c = 4, which leads to E(Q)∞ = 6.164 and E(T )∞ = 0.332.
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(c) E(Q)t with x0 = 10
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(d) E(Q)t with x0 = 10

Figure 1: Evolution of E(Q)t and E(Q)t (s = 10, λ = 9, µ1 = µ2 = 1, N = 45)

Depending on the horizon of observation, c = 4 is not optimal in the transient regime. In the case

x0 = 20 (Figures 1(a) and 1(b)), the system is initially with too many customers, as E(Q)0 = 10 > 6.5.

Therefore, the reservation threshold c should be selected sufficiently high to reduce the expected number

of customers in the queue. As expected, we observe that increasing c reduces the time before reaching

the objective of 6.5. However, any further increase of c above 4 only has marginal effects. For E(Q)t, the

objective of 6.5 is reached between 8 and 9 time units for c = 5, 6, and 10 (Figure 1(a)), while for E(Q)t,

the objective is reached between 30 and 35 time units (Figure 1(b)). This shows that having c > 4 can be
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beneficial only during a restricted time interval. Surprisingly, we observe that c = 3 < 4 can be optimal for

E(Q)t (Figure 1(a)). This can be explained by the behavior of E(Q)t starting from a congested situation.

We observe that first E(Q)t decreases in t reaching a minimal value below its stationary value and later

increases to reach the stationary value. The reason is that all agents are busy in a congested situation,

which leads to the most efficient use of the system capacities and explains why we first observe a decrease

of E(Q)t below its stationary value. This observation has also been made for the M/M/s queue (e.g., see

Figure 1 in [7]). For decision making, it means that having the reservation threshold below its stationary

value can be optimal, even if the system is highly congested at time t = 0.

In the case x0 = 10 (Figures 1(c) and 1(d)), the system is initially with no customer in the queue and

all agents busy. We select c = 0, 1, 2 to observe the time to reach the objective of 6.5. Contrary to the case

x0 = 20, the sensitivity to c is stronger in this case. This indicates that each threshold c = 0, 1, 2 has a large

interval of optimality. It is then advisable to select c as low as possible, provided that the expected number

in the queue does not reach 6.5. These observations are supported by the strong convexity of E(Q)t in c,

as proven in Section 5.2.

In Figure 2, we provide the optimal reservation threshold for different initial conditions on the number

of customers in the queue x0−s with the objective of E(Q)t ≤ 6.5 at time t = 15, 30, and 60 with the same

system parameters as those of Figure 1. We also specify the corresponding value for E(Q)t and 10×E(T )t.

The value of E(T )t is estimated through µE(NB)t − λ, where E(NB)t is the expected number of busy

agents at time t ≥ 0. These figures confirm the observations made in Figure 1. Over a short time horizon

the stationary threshold c = 4 may never be optimal, as in Figure 2(a). Furthermore, in many cases, even

when x0−s > 6.5, we should select c < 4, while having c > 4 is almost never optimal. For decision-making,

it means that the stationary threshold is in many cases “too safe” for the objective expected queue length.

Given that we observe in Figure 2 that the rate of served class-2 customers is highly sensitive to the selection

made for c, it is often advisable over a short time horizon to reserve less agents than what the stationary

results would suggest.

5.2 Monotonicity properties of E(Q)t for the approximated model

To support the observations made in Section 5.1, we provide the transient monotonicity properties of E(Q)t

in Theorem 1 for the discrete time model. Although the approximated model can lead to a transient distri-

bution of the queue length that is as close as wanted to the exact distribution (by selecting a high enough

value for N and a low enough value for ε), Theorem 1 does not necessarily prove the same monotonicity
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(b) t = 30
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(c) t = 60

Figure 2: Optimal reservation threshold for E(Q)t (s = 10, λ = 9, µ1 = µ2 = 1, N = 45)

properties for the exact model. For future research, other techniques should be involved to prove the result

for the exact model like sample path arguments [6] or stochastic ordering [20]. It should be noted that we

could define the approximated discrete time model with N = ∞, as the maximal event rate is bounded.

However in Theorem 1, we prove the monotonicty properties for N <∞ in order to be consistent with the

setting of the numerical experiments of Section 5.1.

This analysis is made for the case µ1 = µ2 since the complexity of the case µ1 6= µ2 does not allow us

to obtain the desired results. We prove the impact of the system parameters by showing the propagation

of one property from the time instant t to the time instant t + ε. Specifically, we show the monotonicity

properties for the quantity Qtx =
x∑

k=s−c
ptk and Zc,tx =

s+N∑
k=x

ptk, where x is the number of customers present in

the system, c is the reservation threshold and ptk is transient probability to find k customers in the system.

Recall that the index y does not need to be specified with equal service rates. The equations governing the
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evolution of the state of the system for the approximated model are as follows:

pt+εs−c = (1− λε)pts−c + (s− c+ 1)µεpts−c+1, (9)

pt+εs−x = (1− (λ+ (s− x)µ)ε)pts−x + λεpts−x−1 + (s− x+ 1)µεpts−x+1 for 1 ≤ x ≤ c− 1,

pt+εx+s = (1− (λ+ sµ)ε)ptx+s + λεpts+x−1 + sµεpts+x+1 for 0 ≤ x ≤ N − 1, and

pt+εs+N = (1− sµε)pts+N + λεpts+N−1,

given an initial condition x0 at time t = 0.

Theorem 1. The following holds for the approximated model:

• E(Q)t is increasing in λ.

• E(Q)t is decreasing and convex in c.

• E(Q)t is increasing in x0.

The monotonicty in λ and c are the same as those proven in the stationary case for the exact model

(e.g., see Theorem 2 in [12]). The convexity of E(Q)t in c explains the observations made in Section 5.1,

according to which the optimal transient reservation threshold should be less than or equal to the stationary

one in most cases. We mention that the convexity in λ does not hold as we consider a truncated system

with at most N customers in the queue. In our numerical illustrations in Figure 2, we observed that E(Q)t

is convex in x0 in addition to being increasing; this is, however, not the case at the beginning of the interval

I as explained at the end of the online appendix.

Some of the results of Theorem 1 can be used for E(T )t. With the one-dimensional Markov chain

formulation, E(T )t can be estimated through E(T )t = µE(NB)ct − λ, where E(NB)ct is the expected

number of busy servers at time t with reservation threshold c. If we express E(NB)ct as E(NB)ct = (s −

c)Zc,ts−c +
s∑

k=s−c+1

Zc,tk , we deduce that E(NB)c+1
t −E(NB)ct = Zc+1,t

s−c − 1 +
s∑

k=s−c+1

(Zc+1,t
k −Zc,tk ) ≤ 0, which

proves that E(NB)ct and E(T )t are decreasing in c. However, E(NB)ct and E(T )t are not convex in c. This

was also not the case in the stationary regime (e.g., see Figure 3 in [1]).
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A Proof of Proposition 1

Proof. We first consider Equation (2) in the case x 6= x0. We introduce a function F (z) for z ∈ C and we

express qθx as

qθx =

∫
C
z−(x+1)F (z)dz,

where C is a contour such that there are no boundary contributions arising in the integral from endpoints

of C. This allows us to use the integration by part and show that xqθx =

∫
C
z−(x+1)zF ′(z)dz. Equation (2)

can then be rewritten as

∫
C
z−(x+1)

(
−F (z) [λ(1− z) + θ] + µF ′(z)(1− z)

)
dz = 0.

Therefore, F (z) is one solution of the differential equation

− F (z) [λ(1− z) + θ] + µF ′(z)(1− z) = 0.

Consequently, F (z) is proportional with e
λ
µ
z
(1 − z)−θ/µ. We thus determine two independent solutions of

(2) by selecting two different contours encircling z = 0. We consider the contour C1 defined as a small circle
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in the z-plane, on which |z| < 1, and C2 which goes from −∞− iε to −∞+ iε for ε > 0, encircling z = 1

in the counterclockwise sense. These contours define Ax(θ) and Bx(θ). Note that for (4) the integrand is

analytic inside the unit circle, as we consider (1− z)−θ/µ = |1− z|−θ/µe−i
θ
µ

arg(1−z), with |arg(1− z)| < π,

such that for z ∈ R and z < 1, arg(1−z) = 0. For (5), we use the branch (z−1)
− θ
µ = |z−1|

−θ
µ e
−i θ

µ
arg(z−1),

where |arg(z − 1)| < π, so the integrand is analytic in C− {Im(z) = 0,Re(z) < 1}.

Consider now Equation (3). We need to determine two solutions of the equation in z, −(λ+ θ+ sµ)z+

λ + sµz2 = 0. These solutions are za and zb. We can that 0 ≤ za < 1 < zb. Consider the case where

s− c ≤ x0 ≤ s− 1. In this case, we express qθx as

qθx = c1Ax(θ) + c2Bx(θ) for s− c ≤ x ≤ x0,

qθx = c3Ax(θ) + c4Bx(θ) for x0 ≤ x ≤ s,

qθx = c5z
x−s
a for x ≥ s.

Note that zb is not part of the expression of qθx since we cannot have lim
x→∞

qθx =∞. We determine c1, c2, c3, c4

and c5 from the boundary equations. These are given by

c1As−c−1(θ) + c2Bs−c−1(θ) = 0,

c1Ax0(θ) + c2Bx0(θ) = c3Ax0(θ) + c4Bx0(θ),

λ(c1Ax0−1(θ) + c2Bx0−1(θ))− (λ+ x0µ+ θ)(c1Ax0(θ) + c2Bx0(θ)) + (x0 + 1)µ(c3Ax0+1(θ) + c4Bx0+1(θ)) = −1,

λ(c3As−1(θ) + c4Bs−1(θ))− (λ+ sµ+ θ)c5 + sµc5za = 0, and

c5 = c3As(θ) + c4Bs(θ).

To express the solutions of this set of equations, we introduce the quantity Wm,n = Am(θ)Bn−1(θ) −

Am−1(θ)Bn(θ). In the case where m = n + 1, Wn+1,n is the Wronskian of An(θ) and Bn(θ). Using

the equation defining Ax(θ) and Bx(θ), we find that Wx+1,x =
λ
µ

x+1W (x, x − 1). Therefore, Wx+1,x =(
λ
µ

)x+1

(x+1)! W0,−1. Furthermore, A0(θ) = 1 and A−1(θ) = 0. With x = −1, the term in z−(x+1) is removed in

the integral definingB−1(θ). This allows us to obtainB−1(θ) =
eλ/µ

(
λ
µ

)θ−1

Γ(θ) andWx+1,x =

(
λ
µ

)x+1

(x+1)!

eλ/µ
(
λ
µ

)θ−1

Γ(θ) .

After some algebra, we then obtain the solution as in Proposition 1.
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We next consider the case where x0 ≥ s. We may write

qθx = c1Ax(θ) + c2Bx(θ) for s− c ≤ x ≤ s,

qθx = c3z
x−s
a + c4z

x−s
b for s ≤ x ≤ x0, and

qθx = c5z
x−s
a for x ≥ x0.

The constants c1, c2, c3, c4 and c5 are solutions of

c1As−c−1(θ) + c2Bs−c−1(θ) = 0,

c1As(θ) + c2Bs(θ) = c3 + c4,

λ(c1As−1(θ) + c2Bs−1(θ))− (λ+ sµ+ θ)(c3 + c4) + sµ(c3za + c4zb) = 0,

λ(c3z
x0−s−1
a + c4z

x0−s−1
b )− (λ+ sµ+ θ)c5z

x0−s
a + sµc5z

x0−s+1
a = −1, and

c3z
x0−s
a + c4z

x0−s
b = c5z

x0−s
a .

This system can also be solved and we find the solutions of Proposition 1.

B Computation of Bx(θ)

Since

(λ+ θ + xµ)Ax(θ) = λAx−1(θ) + (x+ 1)µAx+1(θ), and

(λ+ θ + xµ)Bx(θ) = λBx−1(θ) + (x+ 1)µBx+1(θ),

by multiplying the first equation by Bx(θ) and the second one by Ax(θ) and next subtracting the two

equations, we deduce a relation for the Wronskian of Ax(θ) and Bx(θ), defined byWx,x−1 = Ax(θ)Bx−1(θ)−

Bx(θ)Ax−1(θ). This relation is

(x+ 1)µWx+1,x = λWx,x−1 for x ≥ 0.

Therefore, we have Wx,x−1 =

(
λ
µ

)x
x! W0,−1 for x ≥ 0. Since A−1(θ) = 0 and A0(θ) = 1, we have W0,−1 =

B−1(θ). The expression of B−1(θ) can be obtained explicitly. We find that B−1(θ) =
e
λ
µ

(
λ
µ

) θ
µ
−1

Γ
(
θ
µ

) . This
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leads to Wx,x−1 =
e
λ
µ
(
λ
µ

)x+ θ
µ−1

x!Γ
(
θ
µ

) for x ≥ 0.

Instead of Bx(θ), consider another solution of the equation defining Ax(θ) and Bx(θ), Bx(θ), such

that B−1(θ) = 1 and B0(θ) = 0. With these values, Ax(θ) and Bx(θ) are independent. Therefore,

we may write Bx(θ) = αAx(θ) + βBx(θ). Consider now the Wronskian of Ax(θ) and Bx(θ) defined as

Ux = Ax(θ)Bx−1(θ) − Ax−1(θ)Bx(θ) for x ≥ 0. We show that Ux = U0

(
λ
µ

)x
x! for x ≥ 0. Since U0 = 1, we

deduce that Ax(θ)Bx−1(θ)−Ax−1(θ)Bx(θ) =

(
λ
µ

)x
x! . We then deduce that

Bx(θ) =
Ax(θ)Bx−1(θ)−

(
λ
µ

)x
x!

Ax−1(θ)
for x ≥ 1.

From this expression, we conclude that

Bx(θ) = −Ax(θ)

x∑
k=1

(
λ
µ

)k
k!Ak(θ)Ak−1(θ)

for x ≥ 0.

In the expression of Bx(θ), the coefficient β is found by replacing x by −1. We thus obtain β = B−1(θ) =

e
λ
µ
(
λ
µ

) θ
µ−1

Γ
(
θ
µ

) . The coefficient α can be expressed as

α =
Bx(θ)− βBx(θ)

Ax(θ)
for x ≥ 0.

We have Bx(θ)
Ax(θ) ∼

Γ
(
θ
µ

)
√

2πe
λ
µ
(
θ
µ

+x
) θ
µ+x

as x grows large. Therefore, lim
x→∞

Bx(θ)
Ax(θ) = 0. We also have Bx(θ)

Ax(θ) =

−
x∑
k=1

(
λ
µ

)k
k!Ak(θ)Ak−1(θ) . For a large value of k, we have Ak(θ) ∼ e

λ
µ k

θ
µ−1

Γ
(
θ
µ

) . As the sum
m∑
k=1

(
Γ
(
θ
µ

))2(
θ
µ

)k
k!e

2λµ k
θ
µ−1

(k−1)
θ
µ−1

converges as m tends to infinity, the sum
x∑
k=1

(
λ
µ

)k
k!Ak(θ)Ak−1(θ) also converges as x tends to infinity. Thus we

may write

α =
e
λ
µ

(
λ
µ

) θ
µ
−1

Γ
(
θ
µ

) ∞∑
k=1

(
λ
µ

)k
k!Ak(θ)Ak−1(θ)

.

This leads to

Bx(θ) =
e
λ
µ

(
λ
µ

) θ
µ
−1

Γ
(
θ
µ

) Ax(θ)
∞∑

k=x+1

(
λ
µ

)k
k!Ak(θ)Ak−1(θ)

,
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which allows us to estimate Bx(θ).

C Proof of Proposition 2 and computation of the remaining coefficients

Proof. The homogeneous equation in z associated with Equation (6) is −(λ+ θ + (s− y)µ1 + yµ2)z + λ+

(s− y)µ1z
2 = 0. For y < s, the solutions are

za,y =
λ+ (s− y)µ1 + yµ2 + θ −

√
(λ+ (s− y)µ1 + yµ2 + θ)2 − 4λµ1(s− y)

2(s− y)µ1
, and

zb,y =
λ+ (s− y)µ1 + yµ2 + θ +

√
(λ+ (s− y)µ1 + yµ2 + θ)2 − 4λµ1(s− y)

2(s− y)µ1
.

If y = s, the homogeneous equation associated with Equation (7) is different. We instead have

−(λ+ sµ2 + θ)z + λ = 0, (10)

with solution λ
λ+sµ2+θ = lim

y→s
za,y. Note that lim

y→s
zb,y = ∞. Therefore, we can extend the definition of za,y

to y = s.

We then may write

qθx,y =
s∑

k=y

ck,yz
x−s
a,k for y > y0 and 0 ≤ y ≤ y0, x > x0 − (y0 − y) and

qθx,y =

s∑
k=y,y 6=y0

ck,yz
x−s
a,k + dy0,yz

x−s
a,y0 + ey0,yz

x−s
b,y0

for 0 ≤ y ≤ y0, x ≤ x0 − (y0 − y),

since 0 < za,y < 1 and zb,y > 1. Therefore, for y0 + 1 ≤ k ≤ s or 0 ≤ y ≤ y0, x > x0 − (y0 − y), we have

ck,y = ck,y+1

µ2(y + 1)z2
a,k

(λ+ θ + yµ2 + (s− y)µ1)za,k − λ− (s− y)µ1z2
a,k

= ck,y+1
µ2(y + 1)za,k

(k − y)(µ1(1− za,k)− µ2)

= ck,y+1αk
y + 1

k − y
,

where αk =
µ2za,k

µ1(1−za,k)−µ2 . This relation leads to

qθx,y =

s∑
k=y

(
k

y

)
αk−yk ck,kz

x−s
a,k ,

for y0 < y ≤ s or 0 ≤ y ≤ y0 and x > x0 − y0 + y. Finally, for 0 ≤ y ≤ y0 and x ≤ x0 − (y0 − y), we obtain
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in a similar way

qθx,y =

s∑
k=y,k 6=y0

(
k

y

)
αk−yk ck,kz

x−s
a,k +

(
y0

y

)
αy0−yy0 dy0,y0z

x−s
a,y0 +

(
y0

y

)
βy0−yy0 ey0,y0z

x−s
b,y0

,

where βy0 =
µ2zb,y0

µ1(1−zb,y0 )−µ2 .

Computation of the remaining terms. There remains to determine the constants c0,0, c1,1, ..., cs,s,

dy0,y0 , and ey0,y0 . Using the initial condition, we obtain

s∑
k=y0+1

ck,y0z
x0−s
a,k + dy0,y0z

x0−s
a,y0 + ey0,y0z

x0−s
b,y0

=
s∑

k=y0+1

ck,y0z
x0−s
a,k + cy0,y0z

x0−s
a,y0 , and

λ

 s∑
k=y0+1

ck,y0z
x0−1−s
a,k + dy0,y0z

x0−1−s
a,y0 + ey0,y0z

x0−1−s
b,y0


+ (s− y0)µ1

 s∑
k=y0+1

ck,y0z
x0+1−s
a,k + cy0,y0z

x0+1−s
a,y0


+ (y0 + 1)µ2

s∑
k=y0+1

ck,y0+1z
x0+1−s
a,k − (λ+ (s− y0)µ1 + y0µ2 + θ)

 s∑
k=y0+1

ck,y0z
x0−s
a,k + cy0,y0z

x0−s
a,y0

 = −1.

After simplification, these two equations allow us to express dy0,y0 and ey0,y0 in cy0,y0 . We obtain

dy0,y0 = −
zb,y0

zb,y0 − za,y0
1

λzx0−s−1
a,y0

+ cy0,y0

(
1 +

za,y0
zb,y0 − za,y0

(
zb,y0
za,y0

)x0−s)
, and

ey0,y0 =
za,y0

zb,y0 − za,y0

(
1

λzx0−s−1
b,y0

− cy0,y0

)
.

Next, using the boundary conditions at x = s, we can compute cy,y in terms of cs,s. For instance, line y = s

leads to

(λ+ θ)cs,s = µ1(cs−1,s−1 + sαscs,s).

We thus obtain

cs−1,s−1 = cs,s
λ+ θ − sαsµ1

µ1
.
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We can compute the cy,y’s for y0 + 2 ≤ y ≤ s− 1 using line y, we get

cy−1,y−1 =
1

(s− (y − 1))µ1

s∑
k=y+1

α
k−(y+1)
k ck,k

(
−µ1(s− (y − 1))α2

k

(
k

y − 1

)

+αk(λ+ θ + (s− y)µ1(1− za,k))
(
k

y

)
− µ2(y + 1)za,k

(
k

y + 1

))
+

1

(s− (y − 1))µ1
cy,y (−µ1y(s− (y − 1))αy + (λ+ θ + (s− y)µ1(1− za,y))) .

For y ≤ y0, we proceed in the same way but the relations are more involved. We obtain for 1 ≤ y ≤ y0 + 1,

cy−1,y−1 =
1

(s− (y − 1))µ1

s∑
k=y+1,k 6=y0

α
k−(y+1)
k ck,k

(
−µ1(s− (y − 1))α2

k

(
k

y − 1

)

+αk(λ+ θ + (s− y)µ1(1− za,k))
(
k

y

)
− µ2(y + 1)za,k

(
k

y + 1

))
+

1

(s− (y − 1))µ1
cy,y1y 6=y0 (−µ1y(s− (y − 1))αy + (λ+ θ + (s− y)µ1(1− za,y)))

+
1y0>y

(s− (y − 1))µ1
αy0−(y+1)
y0 dy0,y0

(
−µ1(s− (y − 1))α2

y0

(
y0

y − 1

)
+αy0(λ+ θ + (s− y)µ1(1− za,y0))

(
y0

y

)
− µ2(y + 1)za,y0

(
y0

y + 1

))
+

1y0>y
(s− (y − 1))µ1

βy0−(y+1)
y0 ey0,y0

(
−µ1(s− (y − 1))β2

y0

(
y0

y − 1

)
+βy0(λ+ θ + (s− y)µ1(1− zb,y0))

(
y0

y

)
− µ2(y + 1)zb,y0

(
y0

y + 1

))
+

1

(s− (y0 − 1))µ1
dy0,y01y=y0 (−µ1y(s− (y0 − 1))αy0 + (λ+ θ + (s− y0)µ1(1− za,y0)))

+
1

(s− (y0 − 1))µ1
ey0,y01y=y0 (−µ1y(s− (y0 − 1))βy0 + (λ+ θ + (s− y0)µ1(1− zb,y0))) .

With line y = 1, we express c0,0 as a function of cs,s. Finally, line y = 0 leads to cs,s.
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D Proof of Theorem 1

Proof. We want to prove that E(Q)t is increasing in λ. To this end, we introduce the notation Qtx =
x∑

k=s−c
ptk

for s− c ≤ x ≤ s+N . We then rewrite (9) in terms of Qtx as follows:

Qt+εs−c = (1− (λ+ (s− c+ 1)µ)ε)Qts−c + (s− c+ 1)µεQts−c+1, (11)

Qt+εs−c+x = (1− (λ+ (s− c+ x+ 1)µ)ε)Qts−c+x + λεQts−c+x−1 + (s− c+ x+ 1)µεQts−c+x+1

for 1 ≤ x ≤ c− 1,

Qt+εx+s = (1− (λ+ sµ)ε)Qtx+s + λεQts+x−1 + sµεQts+x+1 for 0 ≤ x ≤ N − 1, and

Qt+εs+N = Qts+N = 1.

We now prove by induction on t that ∂Qtx
∂λ ≤ 0 for s− c ≤ x ≤ s+N . The initial condition is independent

from λ. Therefore, we have ∂Q0
x

∂λ = 0 for s − c ≤ x ≤ s + N . We assume now that ∂Qtx
∂λ ≤ 0 and we prove

that ∂Qt+εx
∂λ ≤ 0 for s− c ≤ x ≤ s+N . We obtain

∂Qt+εs−c
∂λ

= (1− (λ+ (s− c+ 1)µ)ε)
∂Qts−c
∂λ

+ (s− c+ 1)µε
∂Qts−c+1

∂λ
− εQts−c ≤ 0, (12)

∂Qt+εs−c+x
∂λ

= (1− (λ+ (s− c+ x+ 1)µ)ε)
∂Qts−c+x
∂λ

+ λε
∂Qts−c+x−1

∂λ

+ (s− c+ x+ 1)µε
∂Qts−c+x+1

∂λ
− ε(Qts−c+x −Qts−c+x−1) ≤ 0, for 1 ≤ x ≤ c− 1,

∂Qt+εx+s

∂λ
= (1− (λ+ sµ)ε)

∂Qtx+s

∂λ
+ λε

∂Qts+x−1

∂λ
+ sµε

∂Qts+x+1

∂λ

− ε(Qtx+s −Qtx−1+s) ≤ 0 for 0 ≤ x ≤ N − 1, and

∂Qt+εs+N

∂λ
=
∂Qts+N
∂λ

= 0,

which proves the induction step. The expected number of customers in the queue at time t can be expressed

as E(Q)t =
N∑
k=0

kpts+k = N −
N−1∑
k=0

Qts+k. This proves that ∂E(Q)t
∂λ ≥ 0. Therefore, the expected number of

customers in the queue is increasing in λ. It should be noted that the same result holds for the expected

number of customers in the system.

We are now interested in the impact of the reservation threshold on the expected number of customers in

the queue. We thus compare the expected number of customers in the queue with reservation thresholds c

and c+1 for 0 ≤ c < s. We write pc,tx instead of ptx to specify the reservation threshold under consideration.

The initial condition is such that x0 ≥ s − c, otherwise the two systems cannot be compared. We define
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Zc,tx =
s+N∑
k=x

pc,tk and ∆t
x = Zc+1,t

x − Zc,tx . We prove by induction on t that ∆t
x ≤ 0 for s− c ≤ x ≤ s+N . At

t = 0, we have ∆0
x = 0 for s− c ≤ x ≤ s+N . We now show the induction step. From (9), we deduce that

Zc,t+εs−c = Zc,ts−c = 1, (13)

Zc,t+εs−c+x = (1− (λ+ (s− c+ x)µ)ε)Zts−c+x + λεZts−c+x−1 + (s− c+ x)µεZts−c+x+1 for 1 ≤ x ≤ c− 1,

Zc,t+εx+s = (1− (λ+ sµ)ε)Zc,tx+s + λεZc,ts+x−1 + sµεZc,ts+x+1 for 0 ≤ x ≤ N − 1, and

Zc,t+εs+N = (1− (λ+ sµ)ε)Zc,ts+N + λεZc,ts+N−1.

Therefore, we obtain

∆t+ε
s−c+x = (1− (λ+ (s− c+ x)µ)ε)∆t

x + λε∆t
x−1 + (s− c+ x)µε∆t

x+1 ≤ 0 for 1 ≤ x ≤ c,

∆t+ε
x = (1− (λ+ sµ)ε)∆t

x + λε∆t
x−1 + sµε∆t

x+1 ≤ 0 for s ≤ x ≤ s+N − 1, and

∆t+ε
s+N = (1− (λ+ sµ)ε)∆t

s+N + λε∆t
s+N−1 ≤ 0.

Consider now the term at x = s− c. We have

pc,t+εs−c = (1− λε)pc,ts−c + (s− c+ 1)µεpc,ts−c+1, and

pc+1,t+ε
s−c = (1− (λ+ (s− c)µ)ε)pc+1,t

s−c + λεpc+1,t
s−c−1 + (s− c+ 1)µεpc+1,t

s−c+1.

Therefore, we deduce that

∆t+ε
s−c = (1− (λ+ (s− c)µ)ε)∆t

s−c + (s− c)µε∆t
s−c+1 + λε∆t

s−c−1 − (s− c)µεpc,ts−c ≤ 0.

This proves the induction step. Therefore, E(Q)t =
s+N∑
k=s+1

Zc,tk is decreasing in c.

We now prove that E(Q)t is convex in c. We consider a reservation threshold c such that 0 ≤ c ≤ s− 2.

We want to prove that Zc+2,t
x +Zc,tx − 2Zc+1,t

x ≥ 0 for t ≥ 0 and s− c ≤ x ≤ s+N with an initial condition

such that x0 ≥ s−c, otherwise the comparison cannot be made. At t = 0 we have Zc+2,0
x +Zc,0x −2Zc+1,0

x = 0.
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Next, we show the induction with

Zc+2,t+ε
s+N + Zc,t+εs+N − 2Zc+1,t+ε

s+N = (1− (λ+ sµ)ε)
(
Zc+2,t+ε
s+N + Zc,t+εs+N − 2Zc+1,t+ε

s+N

)
+ λε(Zc+2,t+ε

s+N−1 + Zc,t+εs+N−1 − 2Zc+1,t+ε
s+N−1 ) ≥ 0,

Zc+2,t+ε
x + Zc,t+εx − 2Zc+1,t+ε

x = (1− (λ+ sµ)ε)(Zc+2,t
x + Zc,tx − 2Zc+1,t

x )

+ λε(Zc+2,t
x−1 + Zc,tx−1 − 2Zc+1,t

x−1 ) + sµε(Zc+2,t
x+1 + Zc,tx+1 − 2Zc+1,t

x+1 ) ≥ 0 for s ≤ x ≤ s+N − 1,

Zc+2,t+ε
s−c+x + Zc,t+εs−c+x − 2Zc+1,t+ε

s−c+x = (1− (λ+ (s− c+ x)µ)ε)(Zc+2,t
s−c+x + Zc,ts−c+x − 2Zc+1,t

s−c+x)

+ λε(Zc+2,t
s−c+x−1 + Zc,ts−c+x−1 − 2Zc+1,t

s−c+x−1) + (s− c+ x)µε(Zc+2,t
s−c+x+1 + Zc,ts−c+x+1 − 2Zc+1,t

s−c+x+1) ≥ 0

for 1 ≤ x ≤ c− 1.

We now consider the term x = s− c. We have

pc+2,t+ε
s−c = (1− (λ+ (s− c)µ)ε)pc+2,t

s−c + λεpc+2,t
s−c−1 + (s− c+ 1)µεpc+2,t

s−c+1,

pc,t+εs−c = (1− λε)pc,ts−c + (s− c+ 1)µεpc,ts−c+1, and

pc+1,t+ε
s−c = (1− (λ+ (s− c)µ)ε)pc+1,t

s−c + λεpc+1,t
s−c−1 + (s− c+ 1)µεpc+1,t

s−c+1.

We then deduce that

Zc+2,t+ε
s−c + Zc,t+εs−c − 2Zc+1,t+ε

s−c = (1− (λ+ (s− c)µ)ε)(Zc+2,t
s−c + Zc,ts−c − 2Zc+1,t

s−c ) + (s− c)µεZc,ts−c

+ λε(Zc+2,t
s−c−1 + Zc,ts−c − 2Zc+1,t

s−c−1) + (s− c)µε(Zc+2,t
s−c+1 + Zc,ts−c+1 − 2Zc+1,t

s−c+1).

We have (s−c)µε(Zc+2,t
s−c+1 +Zc,ts−c+1−2Zc+1,t

s−c+1) ≥ 0. Moreover, Zc+2,t
s−c +Zc,ts−c−2Zc+1,t

s−c = 2pc+1,t
s−c−1−p

t,c+2
s−c−1−

pc+2,t
s−c−2, Z

c,t
s−c = 1, and Zc+2,t

s−c−1 + Zc,ts−c − 2Zc+1,t
s−c−1 = −pc+2,t

s−c−2. Therefore, we may write

(1− (λ+ (s− c)µ)ε)(Zc+2,t
s−c + Zc,ts−c − 2Zc+1,t

s−c ) + (s− c)µεZc,ts−c + λε(Zc+2,t
s−c−1 + Zc,ts−c − 2Zc+1,t

s−c−1)

≥ (1− (2λ+ (s− c)µ)ε)(2pc+1,t
s−c−1 − p

t,c+2
s−c−1 − p

c+2,t
s−c−2) + λε(2pc+1,t

s−c−1 − p
t,c+2
s−c−1)

≥ (1− (2λ+ (s− c)µ)ε)(Zc+2,t
s−c + Zc,ts−c − 2Zc+1,t

s−c ) + λε(Zc+2,t
s−c + Zc,ts−c − 2Zc+1,t

s−c ) ≥ 0.

This proves that Zc+2,t+ε
s−c + Zc,t+εs−c − 2Zc+1,t+ε

s−c ≥ 0. The expression of E(Q)t indicates that E(Q)t has the

same convexity property as the Ztx’s.

The proof of the monotonicity property of Ztx in x0 is direct from (13) by comparing two systems with
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initial conditions x0 and x0 + 1.

E The expected number of customers in the queue E(Q)t is not convex

in x0

We write E(Q)x0t instead of E(Q)t to specify the initial state x0 for the expected number of customers

in the queue at time t ≥ 0. From the proof of Theorem 1, we may relate E(Q)x0t+ε and E(Q)x0t via

E(Q)x0t+ε = E(Q)x0t + λε(Zc,ts − Zc,ts+N ) − sµεZc,ts+1. At time t = 0, we have E(Q)x00 = max(x0 − s, 0) and

Zc,0k = 1k≥x0 . Therefore, for the first iteration we have

E(Q)x0+2
ε + E(Q)x0ε − 2E(Q)x0+1

ε = 0 for s− c ≤ x0 < s− 2,

E(Q)x0+2
ε + E(Q)x0ε − 2E(Q)x0+1

ε = λε > 0 for x0 = s− 2,

E(Q)x0+2
ε + E(Q)x0ε − 2E(Q)x0+1

ε = 1− (λ+ sµ)ε > 0 for x0 = s− 1,

E(Q)x0+2
ε + E(Q)x0ε − 2E(Q)x0+1

ε = sµε > 0 for x0 = s,

E(Q)x0+2
ε + E(Q)x0ε − 2E(Q)x0+1

ε = 0 for s < x0 < s+N − 2, and

E(Q)x0+2
ε + E(Q)x0ε − 2E(Q)x0+1

ε = −λε < 0 for x0 = s+N − 2,

which shows that the convexity in x0 does not hold due to the boundary state.
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